SOhUTIONS \Rightarrow EQUATIONS OF CTRCLES/ELLIPSES REVIEW
$1\left\{x^{2}+y^{2}=r^{2}\right\}$
a) $r=6$
b)

$$
\begin{aligned}
x^{2}+y^{2} & =(6)^{2} \\
x^{2}+y^{2} & =36
\end{aligned}
$$

$$
\begin{aligned}
& r=\sqrt{5} \\
& \rightarrow \quad x^{2}+y^{2}=(\sqrt{5})^{2} \\
& x^{2}+y^{2}=5
\end{aligned}
$$

c)

$$
\begin{aligned}
r= & 4 \sqrt{7} \\
\longrightarrow & x^{2}+y^{2}=(4 \sqrt{7})^{2} \\
& x^{2}+y^{2}=(16)(7) \\
& x^{2}+y^{2}=112
\end{aligned}
$$

d)

$$
\begin{aligned}
& r=3 \sqrt{2} \\
& x^{2}+y^{2}=(3 \sqrt{2})^{2} \\
& x^{2}+y^{2}=(9)(2) \\
& x^{2}+y^{2}=18
\end{aligned}
$$

2. $A: x^{2}+y^{2}=81$
a) radius
b) x-intercepts
c) y-intercepts
$\begin{aligned} \rightarrow r^{2} & =81 \\ r & =\sqrt{81}\end{aligned}$ $\rightarrow-9$ and +9 $\rightarrow-9$ and 9
$r=9$ units
d) domain
e) range

$$
\{x \mid-9 \leq x \leq 9, x \in R\} \quad\{y \mid-9 \leq \mathbf{y} \leq 9, y \in R\}
$$

2. $B: x^{2}+y^{2}=48$
a) radius
b) x-intercepts

$$
\begin{aligned}
& \leftrightarrow r^{2} \\
& r=48 \\
& r=\sqrt{48} \\
& r=4 \sqrt{16 \times 3} \\
& \text { units }
\end{aligned}
$$

$$
\mapsto-4 \sqrt{3} \text { and } 4 \sqrt{3}
$$

C) y-intercepts
$\rightarrow-4 \sqrt{3}$ and $4 \sqrt{3}$
d) domain

$$
\{x \mid-4 \sqrt{3} \leq x \leq 4 \sqrt{3}, x \in R\}
$$

e) range

$$
\{y \mid-4 \sqrt{3} \leq y \leq 4 \sqrt{3}, y \varepsilon R\}
$$

3. $x^{2}+y^{2}=25$
a) $(-4, ?)$

If $x=-4$:

$$
\begin{aligned}
&(-4)^{2}+y^{2}=25 \quad \quad \text { Coordinate } \Rightarrow(-4,-3) \\
& 16+y_{2}=25 \\
& y^{2}=25-16 \\
& y_{y}^{2}=9 \\
& y= \pm \sqrt{9} \quad(-4,3) \\
& y= \pm 3
\end{aligned}
$$

b)

$$
\begin{aligned}
& x^{2}+y^{2}=25 \\
& (?, 3) \\
& \text { If } y=3: \\
& x^{2}+(3)^{2}=25 \\
& x^{2}+9=25 \\
& x^{2}=25-9 \\
& x^{2}=16 \\
& x= \pm \sqrt{16} \\
& x= \pm 4
\end{aligned}
$$

Coordinate: $(-4,3)$
c)

$$
\begin{array}{ll}
(5, ?) & \\
\begin{array}{ll}
\text { If } x=5: & \\
(5)^{2}+y^{2} & =25 \\
25+y^{2} & =25 \\
y^{2} & =25-25 \\
y & =0 \\
y & = \pm \sqrt{0} \\
y & =0
\end{array} & \\
& \text { Coordinate: }(5,0)
\end{array}
$$

d)

$$
\begin{aligned}
&(2 \sqrt{3}, ?) \\
& \text { If } x=2 \sqrt{3}: \\
&(2 \sqrt{3})^{2}+y^{2}=25 \\
&(4)(3)+y_{2}=25 \\
& 12+y_{2}=25 \\
& y^{2}=25-12 \\
& y^{2}= \pm 3 \\
& y= \pm \sqrt{13}
\end{aligned}
$$

4.

EQUATION	CENTER	DOMAIN	RANGE	x-INTERCEPTS	Y-INTERCEPTS
$x^{2}+y^{2}=9$	$(0,0)$	$\{x \mid-3 \leq x \leq 3, x \in R\}$	$\{y \mid-3 \leq y \leq 3, y \in R\}$	-3 and 3	-3 and 3
$x^{2}+y^{2}=36$	$(0,0)$	$\{x \mid-6 \leq x \leq 6, x \in R\}$	$\{y \mid-6 \leq y \leq 6, y \in R\}$	-6 and 6	-6 and 6
$x^{2}+y^{2}=121$	$(0,0)$	$\{x \mid-11 \leq x \leq 11, x \in R\}\{y \mid-11 \leq y \leq 11, y \in R\}$	-11 and 11	-11 and 11	

5. a) passing through $(2,-4)$
\rightarrow If $x=2$ and $y=-4$:

$$
\begin{gathered}
x^{2}+y^{2}=r^{2} \\
(2)^{2}+(-4)^{2}=r^{2} \\
4+16=r^{2} \\
20=r^{2}
\end{gathered}
$$

\rightarrow Therefore, the equation would be:

$$
\begin{aligned}
& x^{2}+y^{2}=r^{2} \\
& x^{2}+y^{2}=20
\end{aligned}
$$

b) passing through $(4 \sqrt{5}, \sqrt{2})$

$$
\begin{aligned}
& \rightarrow \text { If } x=4 \sqrt{5} \text { and } y=\sqrt{2}: \\
& x^{2}+y^{2}=r^{2} \\
& (4 \sqrt{5})^{2}+(\sqrt{2})^{2}=r^{2} \\
& (16)(5)+2=r^{2} \\
& 80+2=r^{2} \\
& 82=r^{2}
\end{aligned}
$$

\rightarrow Therefore, the equation would be:

$$
\begin{aligned}
& x^{2}+y^{2}=r^{2} \\
& x^{2}+y^{2}=82
\end{aligned}
$$

C) With an x-intercept of -12 :

$$
\rightarrow \text { Point }(-12,0)
$$

If $x=-12$ and $y=0$:

$$
\begin{gathered}
x^{2}+y^{2}=r^{2} \\
(-12)^{2}+(0)^{2}=r^{2} \\
144+0=r^{2} \\
144=r^{2}
\end{gathered}
$$

\rightarrow Therefore, the equation would be:

$$
\begin{aligned}
& x^{2}+y^{2}=r^{2} \\
& x^{2}+y^{2}=144
\end{aligned}
$$

6.

$$
\text { a) } \begin{aligned}
& x^{2}+(y-4)^{2}=64 \\
& (x-0)^{2}+(y-4)^{2}=64
\end{aligned}
$$

Center (0,4)
Radius:

$$
\begin{aligned}
& r^{2}=64 \\
& r=\sqrt{64} \\
& r=8 \text { units }
\end{aligned}
$$

b)

$$
\begin{aligned}
& (x+2)^{2}+y^{2}=49 \\
& (x+2)^{2}+(y+0)^{2}=49
\end{aligned}
$$

Center ($-2,0$)
Radius:

$$
\begin{aligned}
& r^{2}=49 \\
& r=\sqrt{49} \\
& r=7 \text { units }
\end{aligned}
$$

c) $(x+1)^{2}+(y-11)^{2}=100$

Center $(-1,11)$
Radius:

$$
\begin{aligned}
& r^{2}=100 \\
& r=\sqrt{100} \\
& r=10 \text { units }
\end{aligned}
$$

d) $(x-16)^{2}+(y-3)^{2}=144$

Center $(16,3)$
Radius:

$$
\begin{aligned}
& r^{2}=144 \\
& r=\sqrt{144} \\
& r=12 \text { units }
\end{aligned}
$$

a)

$$
\begin{aligned}
& C(-11,6) ; r=\sqrt{7} \\
& (x-h)^{2}+(y-k)^{2}=r^{2} \\
& (x-11)^{2}+(y-6)^{2}=(\sqrt{7})^{2} \\
& (x+11)^{2}+(y-6)^{2}=7
\end{aligned}
$$

b)

$$
\begin{aligned}
& C(0,3) ; r=5 \\
& (x-h)^{2}+(y-k)^{2}=r^{2} \\
& (x-0)^{2}+(y-3)^{2}=(5)^{2} \\
& x^{2}+(y-3)^{2}=25
\end{aligned}
$$

C)

$$
\begin{aligned}
& C(4,-4) ; r=13 \\
& (x-h)^{2}+(y-k)^{2}=r^{2} \\
& (x-4)^{2}+(y=-4)^{2}=(13)^{2} \\
& (x-4)^{2}+(y+4)^{2}=169
\end{aligned}
$$

d)

$$
\begin{aligned}
& C(-9,14) ; r=2 \\
& (x-h)^{2}+(y-k)^{2}=r^{2} \\
& (x-9)^{2}+(y-14)^{2}=(2)^{2} \\
& (x+9)^{2}+(y-14)^{2}=4
\end{aligned}
$$

Baa) $C(2,-2)$ and passing through $\tau(8,4)$

Method 1:

$$
\begin{aligned}
D & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(8-2)^{2}+(4-2)^{2}} \\
& =\sqrt{(6)^{2}+(6)^{2}} \\
& =\sqrt{36+36} \\
& =\sqrt{72} \\
& =\sqrt{36 \times 2} \\
& =6 \sqrt{2}
\end{aligned}
$$

$$
\begin{aligned}
& r=6 \sqrt{2} ; C(2,-2) \\
& (x-h)^{2}+(y-k)^{2}=r^{2} \\
& (x-2)^{2}+(y-2)^{2}=(6 \sqrt{2})^{2} \\
& (x-2)^{2}+(y+2)^{2}=(36)(2) \\
& (x-2)^{2}+(y+2)^{2}=72
\end{aligned}
$$

$$
\begin{gathered}
C(2,-2) \quad J(8,4) \\
h \quad x \quad x y \\
(x-h)^{2}+(y-k)^{2}=r^{2} \\
(8-2)^{2}+(4--2)^{2}=r^{2} \\
(6)^{2}+(6)^{2}=r^{2} \\
36+36=r^{2} \\
72=r^{2}
\end{gathered}
$$

$$
\begin{aligned}
& (x-h)^{2}+(y-k)^{2}=r^{2} \\
& (x-2)^{2}+(y-2)^{2}=72 \\
& (x-2)^{2}+(y+2)^{2}=72
\end{aligned}
$$

b) $C(10,0)$ and passing through $K(1,-3)$

Method 1:

$$
\begin{aligned}
D & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(1-10)^{2}+(-3-0)^{2}} \\
& =\sqrt{(-9)^{2}+(-3)^{2}} \\
& =\sqrt{81+9} \\
& =\sqrt{90} \\
& =3 \sqrt{10}
\end{aligned}
$$

$$
r=3 \sqrt{10} ; C(10,0)
$$

$$
\begin{aligned}
& (x-h)^{2}+(y-k)^{2}=r^{2} \\
& x-10)^{2}+(y-0)^{2}=(3 \sqrt{10})^{2} \\
& x-10)^{2}+y^{2}=(9)(10) \\
& (x-10)^{2}+y^{2}=90
\end{aligned}
$$

Method 2:

$$
\left(\begin{array}{cc}
c(10,0) & K(1,-3) \\
h \quad k y \\
(x-h)^{2}+(y-k)^{2}=r^{2} \\
(1-10)^{2}+(-3=-0)^{2}=r^{2} \\
(-9)^{2}+(-3)^{2}=r^{2} \\
81+9=r^{2} \\
90=r^{2}
\end{array}\right.
$$

$$
\left\lvert\, \begin{aligned}
& (x-h)^{2}+(y-k)^{2}=r^{2} \\
& (x-10)^{2}+(y-0)^{2}=90 \\
& (x-10)^{2}+y^{2}=90
\end{aligned}\right.
$$

qa) $x^{2}+y^{2}-12 y-5=0$
Step 1: $x^{2}+y^{2}-12 y=5$
Step $2: x^{2}+y^{2}-12 y+36=5+36$
Step $38(x-0)^{2}+(y-6)^{2}=41$
Center $(0,6) ; r=\sqrt{41}$ units
b) $x^{2}+y^{2}-4 x-1=0$

Step 1: $x^{2}-4 x+y^{2}=1$
Step 2: $x^{2}-4 x+4+y^{2}=1+4$
Step $3:(x-2)^{2}+(y-0)^{2}=5$
Center $(2,0) ; r=\sqrt{5}$ units
C) $x^{2}+y^{2}-6 x-8 y-1=0$

Step 1: $x^{2}-6 x+y^{2}-8 y=1$
Step 2: $x^{2}-6 x+9+y^{2}-8 y+16=1+9+16$
Step $3:(x-3)^{2}+(y-4)^{2}=26$
Center $(3,4) ; r=\sqrt{26}$ units
d) $2 x^{2}+2 y^{2}+16 x-8 y+19=0$

Extra Step: Divide each term by 2

$$
x^{2}+y^{2}+8 x-4 y+\frac{19}{2}=0
$$

Step 1: $x^{2}+8 x+y^{2}-4 y=-\frac{19}{2}$
Step 2: $x^{2}+8 x+16+y^{2}-4 y+4=\frac{-19}{2}+16+4$
Step $3:(x+4)^{2}+(y-2)^{2}=\frac{-19}{2}+\frac{20}{1}$

$$
(x+4)^{2}+(y-2)^{2}=-\frac{19}{2}+\frac{40}{2}
$$

$$
(x+4)^{2}+(y-2)^{2}=\frac{21^{2}}{2}
$$

Center $(-4,2) ; r^{2}=\frac{21}{2}$

$$
r=\sqrt{\frac{2}{\frac{21}{2}}} \text { units }
$$

e) $3 x^{2}+3 y^{2}-36 x+48 y+100=0$

Extra Step: Divide each term by 3 .

$$
x^{2}+y^{2}-12 x+16 y+\frac{100}{3}=0
$$

Step 1: $x^{2}-12 x+y^{2}+16 y=-\frac{100}{3}$
Step 2: $x^{2}-12 x+36+y^{2}+16 y+64=\frac{-100}{3}+36+64$
Step 3: $(x-6)^{2}+(y+8)^{2}=\frac{-100}{3}+\frac{100}{1}$

$$
\begin{aligned}
(x-6)^{2}+(y+8)^{2} & =-\frac{100}{3}+\frac{300}{3} \\
(x-6)^{2}+(y+8)^{2} & =\frac{200}{3} \\
\text { Center }(6,-8) ; r^{2} & =\frac{200}{3} \\
r & =\sqrt{\frac{000}{3}} \\
r & =\frac{\sqrt{100 \times 2}}{\sqrt{3}} \\
r & =\frac{10 \sqrt{2}}{\sqrt{3}} \text { units }
\end{aligned}
$$

10. $x^{2}+y^{2}-6 x-8 y-39=0$

Step 1: $x^{2}-6 x+y^{2}-8 y=39$
Step 2: $x^{2}-6 x+9+y^{2}-8 y+16=39+9+16$
Step 3: $(x-3)^{2}+(y-4)^{2}=64$
a) Center $(3,4)$
d) Domain: $\{x \mid-5 \leq x \leq 11, x \in R\}$
b) radius:

$$
\begin{aligned}
& r^{2}=64 \\
& r=\sqrt{64}
\end{aligned}
$$

$$
\begin{aligned}
& r=\sqrt{64} \\
& r=8 \text { units }
\end{aligned}
$$

e) Range: $\{y \mid-4 \leq y \leq 12, y \in R\}$
C)

11.a)

$$
\begin{aligned}
& \frac{x^{2}}{36}+\frac{y^{2}}{1}=1 \\
& \frac{x^{2}}{(6)^{2}}+\frac{y^{2}}{(1)^{2}}=1
\end{aligned}
$$

\rightarrow Horizontal Ellipse

$$
\begin{aligned}
& a=6 \\
& b=1
\end{aligned}
$$

b)

$$
\begin{aligned}
& \frac{x^{2}}{16}+\frac{y^{2}}{44}=1 \\
& \frac{x^{2}}{(4)^{2}}+\frac{y^{2}}{(7)^{2}}=1
\end{aligned}
$$

\rightarrow Vertical Ellipse

$$
\begin{aligned}
& a=7 \\
& b=4
\end{aligned}
$$

i)

$$
\begin{aligned}
\text { Major } A x i s & =2 a \\
& =2(6) \\
& =12 \text { units }
\end{aligned}
$$

$$
\begin{aligned}
\text { Minor } A x i s & =2 b \\
& =2(1) \\
& =2 \text { units }
\end{aligned}
$$

ii) Vertices.

$$
(-6,0) \text { and }(6,0)
$$

iii)

$$
\begin{aligned}
& x-i n t s \Rightarrow-6 \text { and } 6 \\
& y-i n t s \Rightarrow-1 \text { and } 1
\end{aligned}
$$

i)

$$
\begin{aligned}
\text { Major Axis } & =2 a \\
& =2(7) \\
& =14 \text { units }
\end{aligned}
$$

$$
\begin{aligned}
\text { Minor } \text { Axis } & =2 \mathrm{~b} \\
& =2(4) \\
& =8 \text { units }
\end{aligned}
$$

ii) vertices.
$(0,-7)$ and $(0,7)$
iii)

$$
\begin{aligned}
& x-i n+s \Rightarrow-4 \text { and } 4 \\
& y-\text { in ts } \Rightarrow-7 \text { and } 7
\end{aligned}
$$

c)

$$
\begin{aligned}
& \frac{x^{2}}{4}+\frac{y^{2}}{9}=1 \\
& \frac{x^{2}}{(2)^{2}}+\frac{y^{2}}{(3)^{2}}=1
\end{aligned}
$$

\rightarrow Vertical Ellipse.

$$
\begin{aligned}
& a=3 \\
& b=2
\end{aligned}
$$

i)

$$
\begin{aligned}
\text { Major Axis } & =2 a \\
& =2(3) \\
& =6 \text { units }
\end{aligned}
$$

$\begin{aligned} \text { Minor Axis } & =2 b \\ & =2(2)\end{aligned}$

$$
=2(2)
$$

$$
=4 \text { units }
$$

ii) vertices $(0,-3)$ and $(0,3)$
iii)

$$
\begin{aligned}
& x \text {-ints } \Rightarrow-2 \text { and } 2 \\
& y \text {-int } \Rightarrow-3 \text { and } 3
\end{aligned}
$$

12.

a) Major Axis is $12 \Rightarrow \begin{aligned} 2 a & =12 \\ a & =6\end{aligned}$

Minor Axis is $5 \Rightarrow 2 b=5$

$$
b=\frac{5}{2}
$$

* Vertical.

$$
\text { Equation: } \begin{aligned}
\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1 \\
\frac{x^{2}}{(5 / 2)^{2}}+\frac{y^{2}}{(6)^{2}}=1 \\
\frac{x^{2}}{25 / 4}+\frac{y^{2}}{36}=1 \\
\mapsto \frac{4 x^{2}}{25}+\frac{y^{2}}{36}=1
\end{aligned}
$$

b)

$$
\begin{aligned}
&r) \rightarrow x \text {-ins } \Rightarrow \pm 7 \\
& \rightarrow y \text {-ins } \Rightarrow \pm 9 \\
& \text { Equation: } \frac{x^{2}}{(7)^{2}}+\frac{y^{2}}{\left(9^{2}\right.}=1 \\
& \frac{x^{2}}{49}+\frac{y^{2}}{81}=1
\end{aligned}
$$

c) \rightarrow One vertex $\Rightarrow(10,0)$
\rightarrow Remaining vertex must be $(-10,0)$

* Therefore the major axis is 20 units

$$
\begin{aligned}
\triangle 2 a & =20 \\
a & =10 .
\end{aligned}
$$

\rightarrow Minor Axis $=6$

$$
\begin{aligned}
4 b & =6 \\
b & =3
\end{aligned}
$$

Equation: $\frac{x^{2}}{(10)^{2}}+\frac{y^{2}}{(3)^{2}}=1$

$$
\frac{x^{2}}{100}+\frac{y^{2}}{9}=1
$$

13a)

$$
\begin{aligned}
& 16(x-1)^{2}+12(y+3)^{2}=48 \\
& \frac{16(x-1)^{2}}{48}+\frac{12(y+3)^{2}}{48}=\frac{48}{48} \\
& \frac{(x-1)^{2}}{3}+\frac{(y+3)^{2}}{4}=1
\end{aligned}
$$

Center (1,-3)
Since this ellipse is vertical, it is parallel to the y-axis.
b)

$$
\begin{aligned}
& 3(x+4)^{2}+9(y-2)^{2}=27 \\
& \frac{3(x+4)^{2}}{27}+\frac{9(y-2)^{2}}{2}=\frac{27}{27} \\
& \frac{(x+4)^{2}}{9}+\frac{(y-2)^{2}}{3}=1
\end{aligned}
$$

Center $(-4,2)$
Since this ellipse is horizonal, it is parallel to the
x-axis. x-axis.

14 a) $9 x^{2}+25 y^{2}-36 x-100 y-89=0 \quad x$-axis.
Step 1: $9 x^{2}-36 x+25 y^{2}-100 y=89$
Extra Step: $9\left(x^{2}-4 x\right)+25\left(y^{2}-4 y\right)=89$
Step 2: $9\left(x^{2}-4 x+4\right)+25\left(y^{2}-4 y+4\right)=89+36+100$
Step $3: 9(x-2)^{2}+25(y-2)^{2}=225$

$$
\begin{aligned}
& \frac{9(x-2)^{2}}{225}+\frac{25(y-2)^{2}}{225}=\frac{225}{225} \\
& \frac{(x-2)^{2}}{25}+\frac{(y-2)^{2}}{9}=1
\end{aligned}
$$

b) $2 x^{2}+5 y^{2}+20 x-30 y+75=0$

Step 1: $2 x^{2}+20 x+5 y^{2}-30 y=-75$
Extrastep: $2\left(x^{2}+10 x\right)+5\left(y^{2}-6 y\right)=-75$
Step $2: 2\left(x^{2}+10 x+25\right)+5\left(y^{2}-6 y+9\right)=-75+50+45$
Step 3: $2(x+5)^{2}+5(y-3)^{2}=20$

$$
\begin{aligned}
& \frac{2(x+5)^{2}}{20}+\frac{5(y-3)^{2}}{20}=\frac{20}{20} \\
& \frac{(x+5)^{2}}{10}+\frac{(y-3)^{2}}{4}=1
\end{aligned}
$$

15. $25 x^{2}+16 y^{2}+150 x+32 y-159=0$

Step 1: $25 x^{2}+150 x+16 y^{2}+32 y=159$
Extra Step: $25\left(x^{2}+6 x\right)+16\left(y^{2}+2 y\right)=159$
Step $2: 25\left(x^{2}+6 x+9\right)+16\left(y^{2}+2 y+1\right)=159+225+16$
Step $3: 25(x+3)^{2}+16(y+1)^{2}=400$

$$
\frac{\frac{25(x+3)^{2}}{400}+\frac{16(y+1)^{2}}{400}=\frac{400}{400}}{\frac{(x+3)^{2}}{16}+\frac{(y+1)^{2}}{25}=1}
$$

a) Center $(-3,-1)$
b) $\frac{(x+3)^{2}}{(4)^{2}}+\frac{(y+1)^{2}}{(5)^{2}}=1 \quad C(-3,-1)$
vertices

$$
\begin{aligned}
& (-3,-1-5) \text { and }(-3,-1+5) \\
& (-3,-6) \text { and }(-3,4)
\end{aligned}
$$

c)

$$
\begin{array}{rlrl}
\text { Major Axis } & =2 a \\
& =2(5) \quad \text { Minor Axis } & =2 b \\
& =10 \text { units } & & =8(4) \\
& =8 \text { units }
\end{array}
$$

16. $4 x^{2}+9 y^{2}-8 x-54 y+49=0$

Step 1: $4 x^{2}-8 x+9 y^{2}-54 y=-49$
Extra Step: $4\left(x^{2}-2 x\right)+9\left(y^{2}-6 y\right)=-49$
Step $2: 4\left(x^{2}-2 x+1\right)+9\left(y^{2}-6 y+9\right)=-49+4+81$
Step 3: $4(x-1)^{2}+9(y-3)^{2}=36$

$$
\begin{aligned}
& \frac{4(x-1)^{2}}{36}+\frac{9(y-3)^{2}}{36}=\frac{36}{36} \\
& \frac{(x-1)^{2}}{9}+\frac{(y-3)^{2}}{4}=1
\end{aligned}
$$

a) Center $(1,3)$
b) $\frac{(x-1)^{2}}{(3)^{2}}+\frac{(y-3)^{2}}{(2)^{2}}=1$
vertices $(1-3,3)$ and $(1+3,3)$

$$
(-2,3) \text { and }(4,3)
$$

$$
\text { c) Major Axis } \begin{aligned}
& =2 a \quad \text { Minor Axis }
\end{aligned}=2 b
$$

