

Use the diagram to explain that $\sqrt{208} = 4\sqrt{13}$

$$c^{2} = a^{2} + b^{2}$$

$$c^{2} = a^{2} + b^{2}$$

$$c^{2} = 3^{2} + 2^{2}$$

$$c^{2} = 8^{2} + 12^{2}$$

$$c^{2} = 9 + 4$$

$$c^{2} = 13$$

$$c = \sqrt{13}$$

$$c^{2} = \sqrt{208}$$

Similar Triangles

$$\triangle$$
 ABC \triangle ADE

ADE is 4 times greater than ABC

Therefore
$$4\sqrt{13} = \sqrt{208}$$

A cube has a volume of 875 cm³. Write the edge length of the cube as a radical in simplest form.

$$\sqrt{\frac{3}{875}}$$

$$\sqrt[3]{5 \times 5 \times 5} \times 7$$

$$5\sqrt[3]{7}$$

A cube has a Surface Area of 648 cm². Write the edge length of the cube as a radical in simplest form.

Solve by Algebra

$$4\sqrt{13} = \sqrt{208}$$
 $\sqrt{13 \times 4 \times 4} = \sqrt{208}$
 $\sqrt{208} = \sqrt{208}$