What Should I Know At This Po-

1. Write $5\sqrt[3]{10}$ as an entire radical.

2. Write the following from least to greatest.

$$\sqrt{38}$$
, $\sqrt[3]{515}$, $\frac{13}{3}$, $\sqrt{2}$, $\sqrt[3]{128}$

ESTIMATE!!

In isosceles $\triangle ABC$, what is the length of BC? Write your answer as a mixed radical.

1. Write $5\sqrt[3]{10}$ as an entire radical.

$$\sqrt[3]{10 \times 5 \times 5 \times 5}$$
 $\sqrt[3]{10 \times 125}$ $\sqrt[3]{1250}$

2. Write the following from least to greatest.

$$\sqrt{38}$$
, $\sqrt[3]{515}$, $\frac{13}{3}$, $\sqrt{2}$, $\sqrt[3]{128}$

ESTIMATE!!

$$\sqrt{38}$$
 $\sqrt{36} \quad \& \quad \sqrt{49}$
 $6 \quad \& \quad 7$

$$\sqrt[3]{515}$$
 $\sqrt[3]{512} \quad \& \quad \sqrt[3]{729}$
 $8 \quad \& \quad 9$

$$13/3 = 4.3$$
 4.5

$$\sqrt{2}$$
 $\sqrt{1}$
 $\frac{4}{1}$
 $\frac{4}{2}$

$$\sqrt[3]{128}$$
 $\sqrt[3]{125} & \sqrt[3]{216}$
 $5 & 6$

$$\sqrt{2}$$
 , 13/3 , $\sqrt[3]{128}$, $\sqrt{38}$, $\sqrt[3]{515}$

In ABD Find BD

$$a^2 + b^2 = c^2$$
 Rearrange

$$a^{2} = c^{2} - b^{2}$$
 $a^{2} = 10^{2} - 5^{2}$
 $a^{2} = 100 - 25$
 $a^{2} = 75$
 $a = \sqrt{75}$

Therefore
$$\overline{BD} = \sqrt{75}$$

In isosceles $\triangle ABC$, what is the length of BC? Write your answer as a mixed radical.

$$\Delta$$
ABD is congruent to Δ ACD

Therefore in
$$\triangle$$
 ADC $\overline{DC} = \sqrt{75}$

Side
$$BD + Side DC = Side BC$$

$$\sqrt{75} + \sqrt{75} = 2\sqrt{75}$$

Reduce
$$2\sqrt{3} \times 5 \times 5$$

 $2 \times 5\sqrt{3}$
 $10\sqrt{3}$