# Making Connections

 $100(0.87)^{1/2}$ 

Coffee, Tea, and Hot Chocolate contain caffeine.

The expression  $100(0.87)^{1/2}$ 

represents the percent of caffeine left in your body 1/2 hour after you drink a caffeine beverage

How can you estimate the value of  $0.87^{1/2}$ 

### Let's Take a Gloser Look!!

Fill in the chart. (You can use your calculator!!)

| x  | $x^{\frac{1}{2}}$     |  |
|----|-----------------------|--|
| 1  | $1^{\frac{1}{2}} =$   |  |
| 4  | $4^{\frac{1}{2}} = 2$ |  |
| 9  | 9=3                   |  |
| 16 | 162=4                 |  |
| 25 | 257=2                 |  |

| x   | $x^{\frac{1}{3}}$ |  |
|-----|-------------------|--|
| 1   | 13=1              |  |
| 8   | 8==2              |  |
| 27  | みず=3              |  |
| 64  | 643=4             |  |
| 125 | 1253=5            |  |

### What do you notice?



To multiply powers with the same base you add.

$$a^m \times a^n = a^{m+n}$$

#### **Examples:**

1. 
$$5^3 \times 5^2 = 5^5$$

$$2. 8^5 \times 8^2 = 8^7$$

2. 
$$8^5 \times 8^2 = 8^7$$
  
3.  $4^4 \times 4^2 = 4^6$ 

$$5^{1/2} \times 5^{1/2} = 5$$

1/2 + 1/2 = 2/2 = 1

This can also be written like:

$$\sqrt{5} \times \sqrt{5} = \sqrt{25}$$

$$= 5$$

$$2^{1/3} \times 2^{1/3} \times 2^{1/3} = 2$$



This can also be written like:

$$\sqrt[3]{2} \times \sqrt[3]{2} \times \sqrt[3]{2} = \sqrt[3]{8}$$
= 2

## Our Conclusion

- Raising a number to an exponent of 1/2 is equivalent to taking the square root!
- Raising a number to an exponent of 1/3 is equivalent to taking the cube root!

$$\mathbf{x}^{1/n} \stackrel{\text{index}}{=} \sqrt[n]{\mathbf{x}}$$

### **Practice Questions**

Calculate each of the following without using a calculator:

$$27^{1/3}$$
  $100^{1/2}$   $16^{1/4}$ 
 $^{3}\sqrt{27}$   $\sqrt{100}$   $+\sqrt{16}$ 
 $= 3$   $= 10$   $= 2$ 

Calculate each of the following without using a calculator:

$$36^{0.5}$$
 $32^{0.25}$ 
 $36^{\frac{1}{2}}$ 
 $32^{0.25}$ 
 $32^{\frac{1}{2}}$ 
 $32^{\frac{1}{2}}$ 

Calculate each of the following without using a calculator:

$$4^{3/2}$$
 index  $27^{2/3}$  cube root  $(74)^3$   $(3)^3$   $(3)^3$   $(3)^3$   $= 9$ 

$$\mathbf{x}^{\mathbf{m}/\mathbf{n}} = (\sqrt[n]{\mathbf{x}})^{\mathbf{m}}$$