(i) Roots
$$(y=0)$$

 $0=(x+2)(x+3)(x-2)$
 $x=-3,-3,2$

Roots
$$(y=0)$$
 (ii) y intercept $(x=0)$
 $0=(x+2)(x+3)(x-2)$ $y=(3)(3)(-2)$
 $y=-12$

(iii) Local max
$$(x=-3.5)$$
 Local min $(x=0)$

$$y = (x+3)(x+3)(x-3)$$
 $y = -13$
 $y = (-0.5)(0.5)(-4.5)$ $(0, -13)$
 $y = 1.135$

$$\frac{y = -10}{(0, -10)}$$

y= 1.125 (-2.5,1.125)

3d Degree
$$y = (x-2)(x^2+7x+10)$$
 positive stretch $y = (x-2)(x+3)(x+5)$

Questions From Homework

$$g(x) = 3x - 2$$

e)
$$F(F(x))$$

 $F(x^{2}+3x-2) = (x^{2}+3x-3)+3(x^{2}+3x-2)-3$
 $= x^{4}+6x^{2}+5x^{2}-12x+4+3x^{2}+9x-6-3$
 $= x^{4}+6x^{2}+8x^{2}-3x-4$

$$y-14 = 3x^{3}+9x$$

$$y-14+81 = 3(x^{3}+\frac{9}{8}x+\frac{81}{16})$$

$$y-\frac{119}{8}+81 = 3(x+94)$$

$$y-\frac{31}{8}=3(x+94)^{3}+\frac{31}{8}$$

$$y=3(x+94)^{3}+\frac{31}{8}$$
Vertex: $(-94,31/8)$

Polynomial Functions

Polynomial - an algebraic expression consisting of two or more terms. A polynomial usually contains only one variable. Within each term the variable is raised to a non-negative integer power, and is multiplied by a constant. The simplest types of polynomials are binomials (two terms) and trinomials (three terms)

Degree of a Polynomial - the greatest power to which the variable is raised; for example, the degree of the trinomial $x^4 - 2x + 5$ is 4

A polynomial function with real coefficients can be represented by

$$y = f(x) = ax^{n} + bx^{n-1} + cx^{n-2} + \dots + x^{n-2}$$

where *a*, *b*, *c*, *etc*. are real numbers. The shape of the graph of the function is affected by the value of *n* (*the Degree of the Polynomial*), the values of the cooefficients, and whether the value of *a* is positive or negative.

Quartic Functions

$$y = ax^4 + bx^3 + cx^2 + dx + e$$

$$y = a(x - r_1)(x - r_2)(x - r_3)(x - r_4)$$

Stretch

$$a > 0$$
 Starts in Q7 Ends in Q1

$$a < 0$$
 Starts in Q3 Ends in Q4

A quartic function has four roots. Either four roots, two roots, or no roots are real numbers. Any other roots are complex numbers. The number of *x*-intercepts on the graph of the corresponding quartic function y = f(x) depends on the nature of the roots.

Four different real roots

@ gintercept:

$$y = (x-3)(x-1)(x+1)(x+2)$$

$$y = (x-3)(x-1)(x+1)(x+2)$$

$$y = (-1)(1)(3)(4)$$

 $y = -12$

$$y = (x-3)(x-1)(x+1)(x+2)$$

Two real unequal and two complex roots.

$$y = -(x-4)(x+2)(x^2-3x+4)$$

Two different real roots and two equal real roots

ent real roots and two roots
$$y = (x-3)(x-1)(x+2)^{2}$$

$$y = (x-3)(x-1)(x+2)^{2}$$

Local Maximum - is the highest point in its immediate region of *x-values*.

This may or may not be the greatest value of the function over its entire domain.

Local Minimum - is the lowest point in its immediate region of *x-values*.

This may or may not be the smallest value of the function over its entire domain.

Calculating Max and Min values on the TI-83

Homework