1) 31 200 J

- 7) 0.0456 J/g °C
- 2) -31 700 J
- 8) 424 g

3) 120°C

9) 2.60 J/g °C

4) 28°C

10) 6.21 J

5) 1100 J

11) 42.6 L

6) 14 900 J

Homework - Worksheet

$$m = 50.0g$$
 $q = mC\Delta T$
 $T_i = 140°C$
 $q = mC (T_F - T_i)$
 $q = -2500J$
 $-2500J = (50.0g)(2.0g°C)(T_F - 140°C)$
 $C = 2.01g°C$
 $C = 2500J = T_F - 140°C$
 $C = 76 - 1650°C$
 $C = 76 - 1650°C$

PHASE CHANGE AND ENTHALPY

Classifying types of systems:

- 1. <u>Open system</u> a system where both matter and energy can flow into or out of the system.
- 2. <u>Closed system</u> a system where energy is allowed to be transferred into and out but matter cannot be transferred.
- 3. <u>Isolated system</u> a system where neither matter nor energy is allowed to enter or leave the system.

<u>ENTHALPY</u> (H) - The total internal (potential) energy and kinetic energy of a system under constant pressure.

⇒Enthalpy is usually expressed in kJ.

ENTHALPY CHANGE (Δ H) - A change under constant pressure where the surroundings of a system absorb energy or release it to the system.

PHASE CHANGE - is a change in the state of matter without a change in the chemical composition of the system. Ex. $H_2O_{(1)} \longrightarrow H_2O_{(g)}$

⇒always involve a change in energy but never involve a change in temperature.

Question:

- (i) What is the temperature where water just starts boiling?
- (ii) What is the temperature when water is boiling violently?
- (iii) If energy is still going into the water and the temperature is not increasing, where is the energy going?

Consider melting ice to water and then boiling water to steam:

heat heat
$$H_2O_{(s)}$$
 -----> $H_2O_{(l)}$ -----> $H_2O_{(g)}$

MOLAR ENTHALPY

For any system:

- an exothermic change involves a decrease in enthalpy
- ⇒gives off energy to the surroundings
- $\Rightarrow \Delta H$ is negative.
- solidification, condensation
- an endothermic change involves an increase in enthalpy.
- ⇒takes in energy from the surroundings
- $\Rightarrow \Delta H$ is positive.
- fusion, vaporization

The enthalpies for substances undergoing phase changes have been measured experimentally. (TABLE 17.3 p. 522)

- enthalpies are reported as molar enthalpies and are expressed as kJ/mol.

Solid liquid gas

Endothermic Phase Changes

- the molar enthalpy of fusion (H_{fus}) represents the quantity of heat that the substance absorbs per mole as it changes state from **solid to liquid**.
- the molar enthalpy of vaporization (H_{vap}) represents the quantity of heat that the substance absorbs per mole as it changes state from **liquid to gas**.

Exothermic Phase Changes

- the molar enthalpy of condensation (H_{cond}) represents the quantity of heat that the substance releases per mole as it changes state from **gas to liquid**
- the molar enthalpy of solidification (H_{solid}) represents the quantity of heat that the substance releases per mole as it changes state from **liquid to solid**.

$$\Delta \mathbf{H}_{\text{fus}} = - \Delta \mathbf{H}_{\text{solid}}$$

$$\Delta \mathbf{H}_{\text{vap}} = - \Delta \mathbf{H}_{\text{cond}}$$

Example

If 500. g of $CCl_2F_{2(l)}$ is vaporized at SATP, find the enthalpy change of the system ($H_{vap} = 34.99 \text{ kJ/mol}$).

$$M = 500.9$$

$$CC1_2F_2$$

$$H_{\text{Vap}} = 34.99 \frac{\text{ET}}{\text{mol}}$$

$$\Delta H_{\text{vap}} = nH_{\text{vap}}$$

$$120.9 \text{Kg/mol}$$

$$\Delta H_{\text{vap}} = 7$$

$$120.9 \text{Kg/mol}$$

$$\Delta H_{\text{vap}} = 145 \text{ KJ}$$

Worksheet