p. 203 #23-28 # Review Nacl Ionic Crystals - packing Metallic bonding - cations 'sea of electrons' Packing arrangements Body-Centered Cubic Face-Centered Cubic Hexagonal Close-Packed Not CI- Nat CI- # **Alloys** #### **Alloys** Mixtures of two or more elements, at least one of which is a metal. ### *Table 7.3* | Table 7.3 Composition of Some Common Alloys | | | | | | | | |--|---|--|--|--|--|--|--| | Name | Composition
(by mass) | | | | | | | | Sterling
silver | Ag 92.5%
Cu 7.5% | | | | | | | | Cast iron | Fe 96%
C 4% | | | | | | | | Stainless
steel | Fe 80.6%
Cr 18.0%
C 0.4%
Ni 1.0% | | | | | | | | Spring
steel | Fe 98.6%
Cr 1.0%
C 0.4% | | | | | | | | Surgical
steel | Fe 67%
Cr 18%
Ni 12%
Mo 3% | | | | | | | Form in one of two ways: ### 1) Substitutional Alloys If atoms of the alloy are about the same size, they can replace each other in the crystal. #### 2) Interstitial Alloys If atomic sizes are quite different, smaller atoms can fit into the spaces between the larger atoms. Hexagonal close-packed # **Electronegativity** weak strong **Electronegativity** The ability of an atom in a compound to attract electrons F #### **Trends** - Within a group, electronegativity decreases from top to bottom - Within a period, electronegativity increases from left to right Ex. F | Table 6.2 | | | | | | | | | |--|------------------|------------------|------------------|-----------|-----------|-----------|--|--| | Electronegativity Values for Selected Elements | | | | | | | | | | H
2.1 | | | | | | | | | | Li
1.0 | Be
1.5 | B
2.0 | C
2.5 | N
3.0 | O
3.5 | F
4.0 | | | | Na
0.9 | Mg
1.2 | AI
1.5 | Si
1.8 | P
2.1 | S
2.5 | CI
3.0 | | | | K
0.8 | Ca
1.0 | Ga
1.6 | Ge
1.8 | As
2.0 | Se
2.4 | Br
2.8 | | | | Rb
0.8 | Sr
1.0 | In
1.7 | Sn
1.8 | Sb
1.9 | Te
2.1 | I
2.5 | | | | Cs
0.7 | Ba
0.9 | TI
1.8 | Pb
1.9 | Bi
1.9 | | | | | ## **Covalent Bond** Recall that a **covalent bond** is a shared pair of electrons between two nonmetal atoms. - Electrons are attracted to the positive nuclei - Each atom wants to reach the electron configuration of a noble gas (ns²np⁶ - Octet Rule) Zond. |52252p5 #### **Single Covalent Bond** Two atoms held together by sharing a pair of electrons Molecular Formula **Electron Dot Structure** Structural Formula #### **Molecular Formula** F_2 ### **Electron Dot Structure** ### Lone pair (unshared pair) A pair of valence electrons not shared between atoms # H_2O # CH₄ - one of carbon's 2s electrons is promoted to the 2p orbital: