Formation Reactions:

This reactions starts with elements only as reactants. The reactants will form compounds as products.

elements ⇒compound

Ex.
$$C_{(s)} + 2H_{2(g)} --> CH_{4(g)}$$

The molar enthalpy symbol for a formation reaction is H_f

Simple Decomposition Reactions:

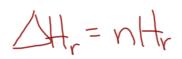
This reaction starts as a compound, which decomposes into its elements.

(opposite of a formation reaction)

compound ⇒elements

Ex.
$$CH_{4(g)} \longrightarrow C_{(s)} + 2H_{2(g)}$$

The molar enthalpy symbol is H_{SD} .


Combustion Reactions:

The reaction of a substance with excess oxygen to produce an oxide.

Ex.
$$C_{(s)} + O_{2(g)} --> CO_{2(g)}$$

The molar enthalpy symbol is H_c .

- (b) Molar Enthalpies
- $\mathbf{H_f}$ molar enthalpies of formation is the quantity of heat released or absorbed when one mole of a substance forms from its elements.
- H_c molar enthalpies of combustion is the quantity of heat released or absorbed when one mole of a substance reacts with oxygen.
- ${f H}^{o}\,$ standard molar enthalpy is the quantity of heat released or absorbed when one mole of a substance reacts at SATP
- (c) ΔH_r Enthalpy change is the quantity of heat released or absorbed when a reaction occurs. This may also be called "Heat of Reaction" or "Change in Heat".
- ⇒ must know the number of moles of a substance reacting to determine the enthalpy change
- (d) Molar enthalpy may be determined from the enthalpy change as long as the number of moles (n) are known.

fusion -> Attas Cond. -> Attand

$$Q = -Q$$

$$mC\Delta T = -mC\Delta T$$

$$mC \left(T_{c}-T_{i}\right) = -mC \left(T_{c}-T_{i}\right)$$

$$\Delta H_r = nH_r$$

Ex.
$$2SO_{2(g)} + O_{2(g)} \longrightarrow 2SO_{3(g)}$$

$$H^o = -98.79 \text{kJ/mol}$$

How do we find the change in enthalpy of $SO_{2(g)}$??

$$H_r = \Delta H_r / n$$

COMMUNICATING ENTHALPY CHANGES

Using ΔH_r notation:

- for chemical reactions not well known, the chemical equation must accompany the enthalpy change. The molar enthalpy of reaction (or change in enthalpy) follows the equation. For exothermic reactions the $\Delta H_r < 0$.

Ex.
$$Mg_{(s)} + 1/2 O_{2(g)} = > MgO_{(s)} \Delta H_r = -601.6kJ$$

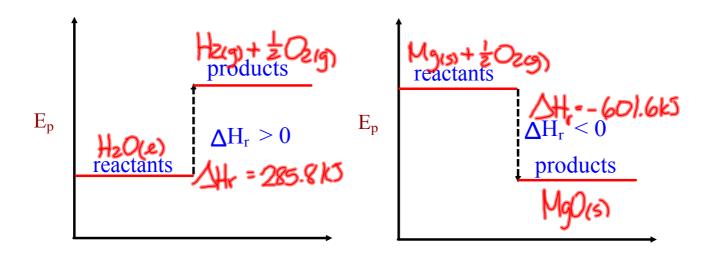
The Enthalpy Change (ΔH_r) may be included as a term in the balanced equation:

(i) In endothermic reactions - energy is reported as a reactant and is transformed in the reaction.

Ex.
$$H_2O_{(1)} + 285.8kJ \Rightarrow H_{2(g)} + 1/2O_{2(g)}$$

(ii) In exothermic reactions - energy is reported as a product since it is being produced.

Ex.
$$Mg_{(s)} + 1/2 O_{2(g)} \Rightarrow MgO_{(s)} + 601.6kJ$$


$$H_2O_{(l)} \Rightarrow H_{2(g)} + 1/2O_{2(g)}$$
 $\Delta H_c = 285.8 \text{kJ}$

POTENTIAL ENERGY DIAGRAMS

- may be used to express enthalpy change (ΔH_r)
- shows the potential energy of the reactants and products of a chemical reaction.
- shows the difference between the initial and final energies as the enthalpy change. (ΔH_r)

Endothermic Rxn

Exothermic Rxn

see Fig 11-8 p 373 (also 11-15,16,17)

For each of the following reactions:

- (a) rewrite the equation including the enthalpy change as a term
- (b) draw a potential energy diagram

(i)
$$C_6H_{12}O_{6(s)} + 6O_{2(g)} \longrightarrow 6CO_{2(g)} + 6H_2O_{(l)}$$
 $\Delta H^o = -2802.7kJ$

(ii)
$$H_2O_{(1)} \longrightarrow H_{2(g)} + \frac{1}{2}O_{2(g)}$$
 $\Delta H^o = 285.8 \text{ kJ}$