VSEPR Theory

Valence-Shell Electron-Pair Repulsion Theory

Repulsion between electron pairs causes molecular shapes to adjust so that the valence-electron pairs are as far apart as possible.

tetrahedral angle (109.5°)

When predicting molecular shapes, double and triple bonds are treated as single bonds.

Hybridization Involving Single Bonds

In <u>hybridization</u>, atomic orbitals mix to form the same total number of equivalent hybrid orbitals.

Ex. CH₄

The one 2s orbital and three 2p orbitals of a carbon atom mix to form four sp^3 hybrid orbitals.

$$S + P_x + P_y + P_z \longrightarrow$$

 $Sp^3 + Sp^3 + Sp^3 + Sp^3$

Hybridization Involving Double Bonds

The one 2s orbital and two 2p orbitals of each carbon atom mix to form three sp^2 hybrid orbitals.

Two of the sp^2 orbitals overlap with the 1s hydrogen orbital to form carbon-hydrogen sigma bonds.

The third sp^2 orbital overlaps with an sp^2 orbital from the other carbon to form a carbon-carbon sigma bond.

The non-bonding *2p* orbitals overlap side-by-side to form a carbon-carbon pi bond.

Hybridization Involving Triple Bonds

Ex. C₂H₂

$$H-C\equiv C-H$$

The one 2s orbital and one 2p orbitals of each carbon atom mix to form two sp hybrid orbitals for each carbon.

One of the *sp* orbitals overlap with the *1s* hydrogen orbital to form carbon-hydrogen sigma bonds.

The second *sp* orbital overlaps with the *sp* orbital from the other carbon to form a carbon-carbon sigma bond.

The non-bonding *2p* orbitals overlap side-by-side to form two carbon-carbon pi bonds.

http://www.mhhe.com/physsci/chemistry/animations/chang_7e_esp/bom5s2_6.swf