Problem of the Week Grade 11 and 12

Pair Possibilities Solution

Problem

Determine all possible ordered pairs of positive integers (a, b) that satisfy

$$\frac{1}{a} + \frac{2}{b} = \frac{8}{2a+b}$$
 and $2a + 5b \le 54$.

Solution

Since a and b are positive integers satisfying $2a + 5b \le 54$, we could write out all ordered pairs that satisfy this inequality and then determine which ones also satisfy the first equation. There will be a large number of possibilities to check so we need to find a way to reduce the number of possibilities. Working with the first equation:

> Find a common denominator: $\frac{b+2a}{ab} = \frac{8}{2a+b}$ "Cross-multiply": (b+2a)(2a+b) = 8abExpand and simplify: $4a^2 + 4ab + b^2 = 8ab$ Rearrange: $4a^2 - 4ab + b^2 = 0$ Factor: $(2a-b)^2 = 0$

It follows that 2a - b = 0 and b = 2a.

Each of the ordered pairs (a, b) will look like (a, 2a). We substitute 2a for b in the inequality obtaining $2a + 5(2a) \le 54$ or $12a \le 54$ or $a \le 4.5$. Since a is a positive integer, a can only take on integer values 1, 2, 3 and 4.

The ordered pairs follow quickly: $\{(1,2), (2,4), (3,6), (4,8)\}$.

 \therefore the only ordered pairs of positive integers (a, b) that satisfy $\frac{1}{a} + \frac{2}{b} = \frac{8}{2a+b}$ and $2a + 5b \le 54$ are (1, 2), (2, 4), (3, 6), and (4, 8).

