Problem of the Week Grade 9 and 10

Formidable Fractions? Solution

Problem

For positive integers a and c, $\frac{\left(\frac{a}{c} + \frac{a}{2} + 1\right)}{\left(\frac{2}{a} + \frac{2}{c} + 1\right)} = 18$. Determine the number of ordered pairs (a, c) that satisfy $a + 3c \le 99$.

Solution 1

First we should simplify the fractional equation,
$$\frac{\left(\frac{a}{c} + \frac{a}{2} + 1\right)}{\left(\frac{2}{a} + \frac{2}{c} + 1\right)} = 18$$
Finding common denominators,
$$\frac{\left(\frac{2a}{2c} + \frac{ac}{2c} + \frac{2c}{2c}\right)}{\left(\frac{2c}{ac} + \frac{2a}{ac} + \frac{ac}{ac}\right)} = 18$$
Simplifying,
$$\frac{\left(\frac{2a + ac + 2c}{2c}\right)}{\left(\frac{2c + 2a + ac}{ac}\right)} = 18$$
Multiplying by the reciprocal,
$$\frac{(2a + ac + 2c)}{2c} \times \frac{ac}{(2c + 2a + ac)} = 18$$

Since the bracketed numerator and bracketed denominator are the same and cannot equal zero, we can simplify to $\frac{ac}{2c} = 18$. Since $c \neq 0$, the expression further simplifies to $\frac{a}{2} = 18$ or a = 18(2) = 36. Substituting a = 36 into $a + 3c \leq 99$ we obtain $36 + 3c \leq 99$ which simplifies to $3c \leq 63$ and $c \leq 21$ follows.

But $c \ge 1$ and c is an integer so $1 \le c \le 21$. The value of a is 36 for each of the 21 possible values of c.

: there are 21 ordered pairs (a, c) that satisfy the problem.

Solution 2 is on the next page.

Solution 2

First we should simplify the fractional equation, $\frac{\left(\frac{a}{c} + \frac{a}{2} + 1\right)}{\left(\frac{2}{a} + \frac{2}{c} + 1\right)} = 18$

Multiply the numerator and the denominator by 2ac:

$$\frac{\left(\frac{a}{c} + \frac{a}{2} + 1\right)}{\left(\frac{2}{a} + \frac{2}{c} + 1\right)} \times \frac{2ac}{2ac} = 18$$

The equation simplifies to:
$$\frac{2a^2 + a^2c + 2ac}{4c + 4a + 2ac} = 18$$

Factoring, we obtain:
$$\frac{a(2a + ac + 2c)}{2(2c + 2a + ac)} = 18$$

Since the bracketed numerator and bracketed denominator are the same and cannot equal zero, we can simplify to $\frac{a}{2} = 18$ and a = 36 follows.

Substituting a = 36 into $a + 3c \le 99$ we obtain $36 + 3c \le 99$ which simplifies to $3c \le 63$ and $c \le 21$. But $c \ge 1$ and c is an integer so $1 \le c \le 21$. The value of a is 36 for each of the 21 possible values of c.

: there are 21 ordered pairs (a, c) that satisfy the problem.

