Circle Geometry
1.

$$
x^{\circ}=25^{\circ}
$$

Review \#1
2.

$$
x^{\circ}=25^{\circ}
$$

3.

$$
x^{\prime \prime}=25^{\circ}-y^{\circ}=25^{\circ}
$$

4.

5.

$$
\begin{aligned}
& a^{\circ}=55^{\circ} \\
& b^{\circ}=55^{\circ} \\
& c^{\circ}=35^{\circ}
\end{aligned}
$$

6.

$$
\begin{aligned}
& \mathrm{a}^{\circ}=70^{\circ} \\
& \mathrm{b}^{\circ}=40^{\circ} \\
& \mathrm{c}^{\circ}=20^{\circ} \\
& \mathrm{d}^{\circ}=20^{\circ} \\
& \mathrm{e}^{\circ}=20^{\circ} \\
& \mathrm{f}^{\circ}=20^{\circ}
\end{aligned}
$$

7.

$$
\begin{aligned}
& \mathrm{x}^{\circ}=\frac{132^{\circ}}{\mathrm{y}^{\circ}=33^{\circ}}
\end{aligned}
$$

8.

Find the radius.

$$
\begin{aligned}
& C^{2}=a^{2}+b^{2} \\
& C^{2}=(6)^{2}+(10)^{2} \\
& C^{2}=36+100 \\
& C^{2}=136 \\
& C=\sqrt{136} \\
& C=11.7 \text { or } 2 \sqrt{34} .
\end{aligned}
$$

9.

$$
\begin{gathered}
\text { Find the radius. } \\
c^{2}=a^{2}+b^{2} \\
(13)^{2}=(12)^{2}+(x)^{2} \\
169=144+x^{2}
\end{gathered} \quad \rightarrow \begin{gathered}
169-144=x^{2} \\
25=x^{2} \\
5=x
\end{gathered}
$$

11.

10.

$$
\mathrm{a}^{0}=
$$

\qquad
$\mathrm{b}^{\circ}=$ \qquad $\mathrm{x}=$ \qquad
$\mathrm{c}^{\circ}=$ \square

$$
\mathrm{d}^{\circ}=
$$

\square

$$
\mathrm{e}^{\circ}=13^{\circ}
$$

To find " 2 ":

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2} \\
& c^{2}=(3)^{2}+(4)^{2} \\
& c^{2}=9+16 \\
& c^{2}=25 \\
& c=5
\end{aligned}
$$

$$
\begin{aligned}
& x^{\circ}=95^{\circ} \\
& y^{\circ}=48^{\circ} \\
& z^{\circ}=95^{\circ}
\end{aligned}
$$

12.

(1)
(2)

Find the Sector Area and the Arc Length.

$$
\begin{aligned}
& A=\pi r^{2} \quad \frac{S A}{A \circ f C} \\
&=\pi(10)^{2} \quad=\frac{\text { Angle }}{360^{\circ}} \\
&=\pi(100) \quad \frac{S A}{314.16} \\
&=314.16 \quad \frac{70^{\circ}}{360^{\circ}} \\
& \frac{(S A)\left(360^{\circ}\right)}{360^{\circ}}=\frac{(314.16)\left(70^{\circ}\right)}{360^{\circ}} \\
& S A=61.09 \text { Units }^{2}
\end{aligned}
$$

(2)

$$
\begin{array}{rlrl}
C= & =2 \pi r & \frac{A \cdot L}{C} & =\frac{\text { Angle }}{360^{\circ}} \\
=2 \pi(10) & \frac{A \cdot L}{62.83} & =\frac{70^{\circ}}{360^{\circ}} \\
& =62.83 \quad\left(\frac{A L)\left(360^{\circ}\right)}{360^{\circ}}\right. & =\frac{(62.83)\left(70^{\circ}\right)}{360^{\circ}} \\
A L & =12.22 \text { nits. } \\
\left(\begin{array}{rl}
\text { AL }
\end{array}\right.
\end{array}
$$

