ANSWERS \Rightarrow CORDINATE GEOMETRY R EVIEW
(a) $y=2 x+4$

$$
\begin{gathered}
y=x+4 k \\
b=4 k
\end{gathered}
$$

$$
\frac{4}{4}=\frac{4 K}{4}
$$

$$
1=K
$$

$$
\begin{array}{rlrl}
\text { b) } 4 x+y-4=0 & \\
y=-4 x+4 & \\
b=4 & 4=-5 \\
2 x+K y+5=0 & 4(k)=1(-5) \\
\frac{k y}{}=-\frac{2 x-5}{k} & 4 k=-\frac{5}{k} \\
y=\frac{-2 x}{k}-\frac{5}{k} & 4=\frac{-5}{4} \\
b=\frac{-5}{k} &
\end{array}
$$

2a) $2 x-3 y-12=0$

$$
\frac{2 x}{3}-\frac{12}{3}=\frac{7 y}{7}
$$

$$
\frac{2}{3} x-4=y
$$

$m=\frac{2}{3}$ (up)
$b=-4$.
b)

$$
\begin{aligned}
& 3 x-4 y=0 \\
& \frac{3 x}{4}=\frac{4 y}{4} \\
& \frac{3}{4} x=y \\
& m=\frac{3}{4} \text { (over) } \\
& b=0
\end{aligned}
$$

3. $A(-7,3) \quad B(2,8) \quad C(7,-1) \quad D(-2,-6)$
a)

$$
\begin{array}{rlrl}
m_{A B} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad m_{C D} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad \text { since } m_{A B}=m_{C D} \\
& =\frac{8-3}{2-7} & =\frac{-6-1}{-2} & \text { side } A B \text { is } \\
& =\frac{5}{9} & & =\frac{-5}{-9} \\
& =\frac{5}{9} & \text { parallel to } C D .
\end{array}
$$

b) $m_{A C}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad m_{B D}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad$ Since $m_{A C}$ is the negative $=\frac{-1-3}{7--7}=\frac{-6-8}{-2-2} \quad$ the diagonals are

$$
\begin{aligned}
=\frac{-4}{14} & =\frac{-14}{-4} \\
=\frac{-2}{7} & =\frac{14}{4} \\
& =\frac{7}{2}
\end{aligned}
$$

4. $\triangle P Q R \quad P(3,3) Q(5,-1) R(1,-3)$

SIDE PR:

$$
\begin{array}{rlrl}
m_{P Q} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & m_{P Q}=-2 & P(3,3) \\
& =\frac{-1-3}{5-3} & y-y_{1}=m\left(x-x_{1}\right) \\
& =-\frac{4}{2} & 2 x+3=-2(x-3) \\
& 2 x+3-6=-2 x+6 \\
& =-2 & 2 x+y-9=0
\end{array}
$$

SIDE QR:

$$
\begin{aligned}
& m_{Q R}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad m_{Q R}=\frac{1}{2} \quad y-y_{1}=m\left(x-x_{1}\right) \\
& =\frac{-3--1}{1-5} \quad Q(5,-1) \\
& =\frac{-2}{-4} \\
& y+1=\frac{1}{2} x-\frac{5}{2} \\
& 2 y+2=1 x-5 \\
& =\frac{1}{2} \\
& 0=1 x-2 y-5-2 \\
& 0=1 x-2 y-7 \text {. }
\end{aligned}
$$

SIDE PR: $\quad m_{P_{R}}=3 \quad y-y_{1}=m\left(x-x_{1}\right)$

$$
\begin{aligned}
& m_{P R}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad R=(1,-3) \\
& y-3=3(x-1) \\
& y+3=3 x-3 \\
& =\frac{-3-3}{1-3} \\
& 0=3 x-y-3-3 \\
& 0=3 x-y-6 \text {. } \\
& =\frac{-6}{-2} \\
& =3
\end{aligned}
$$

5. $\left(\begin{array}{c}A \\ (-6,-2)\end{array} \stackrel{B}{(-1,0)}\left(\begin{array}{c}\text { C } \\ (1,-5)\end{array}\right.\right.$

$$
\begin{aligned}
& m_{A B}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad m_{B C}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad m_{A C}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad m_{A B} \text { is the } \\
& =\frac{0^{-}-2}{-1-6}=\frac{-5-0}{1--1}=\frac{-5-2}{1--6} \text { of } m_{B C} \text { therefore } \\
& =\frac{2}{5}=\frac{-5}{2}=\frac{-3}{7} \\
& \text { therefore } \\
& \text { this is a } \\
& \text { right triangle }
\end{aligned}
$$

6.

$$
\begin{gathered}
A(K,-5) B(2,3) \quad m=\frac{-3}{4} \\
m_{A B}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
\frac{-3}{4}=\frac{3-5}{2-K} \\
\frac{-3}{4}=\frac{8}{2-K} \\
(-3)(2-K)=(4)(8) \\
-6+3 K=32 \\
3 K=32+6 \\
\frac{7 K}{3}=\frac{38}{3} \\
K=\frac{38}{3}
\end{gathered}
$$

7. $(k,-5)(4,-4)$ $(k, 4)(-2,3)$
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$$
=\frac{-4 y-5}{4-k}
$$

$$
=\frac{1}{4-K}
$$

$$
\eta=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

$$
=\frac{3-4}{-2-k}
$$

$$
=\frac{-1}{-2-k}
$$

If parallel: $\frac{1}{4-k}=2-\frac{1}{2-k}$

$$
\begin{aligned}
(1)(-2-K) & =(4-K)(-1) \\
-2-K & =-4+K \\
-2+4 & =K+K \\
\frac{2}{2} & =\frac{2 K}{2} \\
1 & =K
\end{aligned}
$$

8. $A(-3,1) B(3,3)$

$$
C(-1,-6) \quad D(1,1)
$$

$$
\begin{aligned}
D_{A B} & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} & D_{C D} & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(3-3)^{2}+(3-1)^{2}} & & =\sqrt{(1--1)^{2}+(1--6)^{2}} \\
& =\sqrt{(6)^{2}+(2)^{2}} & & =\sqrt{(2)^{2}+(7)^{2}} \\
& =\sqrt{36+4} & & =\sqrt{4+49} \\
& =\sqrt{40} & & =\sqrt{53} \\
& =\sqrt{4 \times 10} & & \\
& =2 \sqrt{10} & &
\end{aligned}
$$

Line segment $C D$ is longer.
9. $\operatorname{BALL}(0,0) \operatorname{SIDE}(4,2)$ POCKET $(0,4)$

$$
\begin{aligned}
D_{\text {SALTO SIDE }} & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
= & \sqrt{(4-0)^{2}+(2-0)^{2}} \\
& =\sqrt{(4)^{2}+(2)^{2}} \\
& =\sqrt{16+4} \\
& =\sqrt{20} \\
& =\sqrt{4 \times 5} \\
& =2 \sqrt{5}
\end{aligned}
$$

$$
D_{\text {SIDE TO POCKET }}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

The red ball will

$$
\begin{aligned}
& =\sqrt{(0-4)^{2}+(4-2)^{2}} \\
& =\sqrt{(-4)^{2}+(2)^{2}} \\
& =\sqrt{16+4} \\
& =\sqrt{20} \\
& =\sqrt{4 \times 5} \\
& =2 \sqrt{5}
\end{aligned}
$$

10. $A(-1,-1) \quad B(2,3)$

$$
C(-4,0) \quad D(2,8)
$$

$$
m_{A B}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

$$
m_{C D}=\frac{y_{2}-y_{1}}{v} \quad \text { Since } m_{A B}=m_{C D} \text {, }
$$

$$
=\frac{3^{-}-1}{2^{-}-1}
$$

$$
=\frac{8-0}{2-4}
$$

$$
=\frac{4}{3}
$$

$$
=\frac{8}{6}
$$

$\begin{array}{cc} \\ \text { Ila) } \\ (-1,3) & \left.\begin{array}{c}\text { B } \\ (1,8) \\ (-3,-2)\end{array}\right)\end{array}$

$$
=\frac{4}{3}
$$

These points are

$$
\begin{array}{rlrl}
m_{A B} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & m_{B C} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{8-3}{1--1} & =\frac{-2-8}{-3-1} & =\frac{-2-3}{x_{2}-x_{1}} \\
& =\frac{5}{-3-1} \\
& & =\frac{-10}{-4} & \\
& & =\frac{-5}{2} & \\
& & & =\frac{5}{-2}
\end{array}
$$

$\begin{array}{cc}\text { b) } & \begin{array}{c}\text { D } \\ (-2,-3)\end{array} \\ (4,0) & \text { E } \\ (10,5)\end{array}$

$$
\begin{array}{rlrl}
m_{D E} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad m_{E F}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad m_{D F} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad \text { These points } \\
& =\frac{0^{-}-3}{4-2} & =\frac{5-0}{10-4} & =\frac{5-3}{10^{-}-2} \\
& =\frac{3}{6} & =\frac{8}{12} \\
& =\frac{1}{2} & =\frac{5}{6} & \text { Collinear. }
\end{array}
$$

$\begin{array}{cc}G & H \\ (1,12) & \left.\begin{array}{c}4,-3\end{array}\right) \\ (5,-8)\end{array}$

$$
\begin{array}{rlrl}
m_{G H} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{-3-12}{4-1} & =\frac{y_{H I}-y_{1}}{x_{2}-x_{1}} \quad m_{G I} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad \text { These points } \\
& =\frac{-8-3}{5-4} & =\frac{-8-12}{5-1} \\
& =\frac{-15}{3} & & =\frac{-5}{1} \\
& =-5 & & =-\frac{20}{4} \\
& & =-5
\end{array}
$$

12. $(5, k)(-4,-2)$

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

$$
=\frac{-2-k}{-4-5}
$$

$$
=-2-K
$$

$$
=\frac{-2-K}{-9}
$$

$$
\begin{aligned}
& (3,-K)(1,2) \\
& m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& \frac{-2-K}{-9}=\frac{2+K}{-2} \\
& =\frac{2^{2}-k}{1-3} \\
& 4+2 k=-18-9 k \\
& =\frac{2+K}{-2} \\
& 2 k+9 k=-18-4 \\
& \frac{H K}{H}=\frac{-22}{11} \\
& K=-2 \text {. }
\end{aligned}
$$

13. $A(-2,2) \quad B(7,5) C(9,-3) \quad D(-4,-2)$

$$
\begin{array}{rlrll}
D_{A C} & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} & D_{B D} & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} & \text { Diagonal } \\
& =\sqrt{\left.(9-2)^{2}+(-3-2)\right)^{2}} & & =\sqrt{(-4-7)^{2}+(-2-5)^{2}} & \text { BD is } \\
& =\sqrt{(11)^{2}+(-5)^{2}} & & =\sqrt{(-11)^{2}+(-7)^{2}} & \text { longer. } \\
& =\sqrt{121+25} & & =\sqrt{121+49} & \\
& =\sqrt{146} & & =\sqrt{170} &
\end{array}
$$

$$
\text { 14. } \begin{aligned}
\left.P(-1,2) \quad \begin{array}{rl}
A(6,-1) & U(-8,5) \\
\text { Midpoint }_{A U} & =\left(\frac{x_{2}+x_{1}}{2}, \frac{y_{2}+y_{1}}{2}\right) \text { Therefore } \\
& =\left(\frac{-8+6}{2}, \frac{5+-1}{2}\right) \text { of } \text { the midpoint } \\
& =\left(\frac{-2}{2}, \frac{4}{2}\right) \\
& =(-1,2)
\end{array}\right)
\end{aligned}
$$

15.

$$
\begin{array}{lll}
\text { Midpoint }=(5,1) & E(-1,0) & F(x, y) \\
\frac{5}{1}=-\frac{1+x}{2} & \frac{1}{2}=\frac{0+y}{2} & \text { The missing } \\
(5)(2)=(1)(-1+x) & (1)(2)=(1)(y) & \text { point } F \text { is } \\
10=-1+1 x & 2=y & (11,2) . \\
10+1=1 x & & \\
11=x & &
\end{array}
$$

