Warm Up

	Element	Compound	Molecule
Fe ₂ O ₃	×		
F ₂		×	
Мо		X	X
СО	X		
NaHCO ₃	×		

Molecules

A molecule is formed when two or more atoms join together chemically.

A compound is a molecule that contains at least two different elements.

All compounds are molecules but not all molecules are compounds.

EXERCISE

p. 52 #20-27

CHEMISTRY 112

Matter & Its Diversity

<u>physical changes</u> - are those in which <u>no new substances are</u> formed.

Ex. boiling -
$$H_2O_{(I)}$$
 --> $H_2O_{(g)}$

•chemical changes - are those in which a new substance is formed.

Ex. C + O_2 --> CO_2

chemical reaction

<u>qualitative knowledge</u> - describes changes in matter not involved with a measured quantity. Ex. color

<u>quantitative knowledge</u> - involves a measure of the **amount** of matter or the **amount** of change in a measurable property of matter.

- involves a number (usually)

Ex. mass of magnesium is 1.2 g

<u>empirical knowledge</u> - observable information that can be measured.

Ex. dinosaurs did exist

theoretical knowledge - explains observations in terms of ideas.

Ex. dinosaurs died 65 million years ago due to an asteroid strike.

COMPONENTS OF EXPERIMENTAL DESIGN

Manipulated Variable (independent variable)

- the property that is being changed

Responding Variable (dependent variable)

- the property that changes as a result of the change in the manipulated variable.

Controlled Variable

- a property that is kept constant.

Example: How does sleep affect performance in school?

Elements

Metals - substances that are shiny, bendable and good conductors of electricity and heat.

Ex. gold

Nonmetals - are not shiny, bendable and are not good conductors.

Solid nonmetals are brittle and lack luster.

Ex. sulfur (S)

Most nonmetals are gases

Ex. oxygen

Metalloids - elements that have properties that are similar to metals and nonmetals.

SUMMARY

⇒ Metals and nonmetals separated by the "staircase line".

The most common elements in the human body are:

#1 - oxygen - 65%

#2 - carbon - 18%

#3 - hydrogen - 10%

http://www.freeinfosociety.com/site.php?postnum=658

Traditional Groups

Alkali Metals - elements found in group 1. The normally are soft, silver-colored metals that react readily with water forming basic solutions.

Alkaline Earth Metals - elements found in group 2. They are light, reactive metals that form oxide coatings.

Halogens - elements in group 17- are extremely reactive nonmetals.

Nobel Gases - elements in group 18 - very unreactive gases.

Representative Elements - are elements in group 1,2,13 to 18. These elements best follow the periodic law and are often used to demonstrate theories.

Transition Elements - elements found in groups 3 to 12 ("D block")
- elements whose electrons enter inner shells as atomic number increases

Atomic Mass - is the relative mass of an atom as compared to the mass of a carbon atom. (has been assigned a mass of 12 a.m.u's.)

1 atomic mass unit (a.m.u) - is 1/12 the mass of a carbon atom.

Periodic Table of the Elements

I	II											III	IV	V	VI	VII	0
H																	He²
Li ³	Be⁴	Transition Metals									B ⁵	C _e	N ⁷	O ⁸	F°	Ne	
Na ¹¹	Mg	IIIB	IVB	VB	VIB	VIIB .		ушв		IB	IIB	Al ¹³	Si ¹⁴	P 15	S ¹⁶	CI ¹⁷	Ar ¹⁸
K ¹⁹	Ca	Sc	Ti ²²	V 23	Cr ²⁴	Mn	Fe	Co	Ni ²⁸	Cu	Zn	Ga	Ge	As	Se	Br ³⁵	Kr ³⁶
Rb ³⁷	Sr	Y 39	Zr ⁴⁰	Nb	M ₀	TC ⁴³	Rů	Rh⁵⁵	Pď	Ag ⁴⁷	Cd ⁴⁸	In ⁴⁹	Sn⁵⁵	Sb ⁵¹	Te ⁵²	F 53	Xe ⁵⁴
Cs ⁵⁵	Ba ⁵⁶	57-71	Hf ⁷²	Ta ⁷³	W^{74}	Re ⁷⁵	Os ⁷⁶	Ir 77	Pt ⁷⁸	Au 79	Нg	TI ⁸¹	Pb ⁸²	Bi ⁸³	Po 84	At ⁸⁵	Rn
Fr ⁸⁷	Ra [∞]	89-103	Rf 104	Ha	106	107	108	109									
Lanth	anide	es L	La ⁵⁷	Ce ⁵⁸	Pr ⁵⁹	Nď	Pm ⁶¹	Sm ⁶²	Eu	Gď	Tb [®]	Dy	Ho ⁶⁷	Er ⁶⁸	Tm	Yb ⁷⁰	Lu
Actin	ides	L	Ac 89	Τĥ	Pa	U ⁹²	Npg3	Pů	Am	Cm	Bk ⁹⁷	Cf	Es	Fm	Md	No	Lr 103
Metal Metalloid Nonmetal																	