Why does carbon form a large variety of compounds? - 4 bonds - double/triple bonds : C=C=C-C- - Chains and rings ### **Structural Models and Diagrams** #### Molecular formula Ex. C_5H_{12} #### **Expanded molecular formula** Ex. #### Complete structural diagram Ex. ### Condensed structural diagram Ex. ### **Line Diagram** Ex. For C_5H_{12} ? ^{*}Find longest chain ^{*}Begin counting from either end ## Quick Review of Structural Models and Diagrams | | separate C's | Atoms
and
Bonds | No
H's
↓ | C's at end of line segment | |-------------------------------|---|-----------------------------------|------------------------------------|----------------------------| | Molecular
Formula | Expanded
Molecular
Formula | Complete
Structural
Diagram | Condensed
Structural
Diagram | Line
Diagram | | C ₃ H ₈ | CH ₃ CH ₂ CH ₃ | H-C-C-C-H | - C - C - E- | | ### **Organic Families** Organic families are classed according to functional groups. Functional groups are areas on a molecule that are reactive. Hydrocarbons with general formula C_nH_{2n+2} contain all single bonds and are called **alkanes**. Ex. Hydrocarbons with general formula C_nH_{2n} contain one double bond (alkenes) or are cyclic (cycloalkanes). "closed ring" Hydrocarbons with a general formula C_nH_{2n-2} have a triple bond (alkynes) or are cyclic with a double bond (cycloalkenes). The prefixes for compounds or alkyl groups with one to 10 carbons are shown in the chart on p. 695. | | <u>IUPAC</u> | <u>ALKYL</u> | <u>ALKYL</u> | |----------------|--------------|-----------------|--------------| | FORMULA | <u>NAME</u> | <u>GROUP</u> | <u>NAME</u> | | CH_4 | meth ane | CH_3 | meth yl | | C_2H_6 | eth ane | C_2H_5 | eth yl | | C_3H_8 | prop ane | C_3H_7 | prop yl | | C_4H_{10} | but ane | C_4H_9 | but yl | The remaining 6 follow latin naming. ## **Isomers** **Structural Isomers - compounds with the same molecular formula, but atoms are connected differently** *Find longest chain *Begin counting from either end Ex. C₄H₁₀ How many isomers can be drawn for C₂H₆? # (5H12 # **Isomers** H H H H H 1 1 1 1 1 Ex. H-C-C-C-C-H 1 1 1 1 1 H H H H H ## Homework Structural Diagram Worksheet Draw all the structural isomers for C₆H₁₄.