Why does carbon form a large variety of compounds?

- 4 bonds
- double/triple bonds : C=C=C-C-

- Chains and rings

Structural Models and Diagrams

Molecular formula

Ex. C_5H_{12}

Expanded molecular formula

Ex.

Complete structural diagram

Ex.

Condensed structural diagram

Ex.

Line Diagram

Ex.

For C_5H_{12} ?

^{*}Find longest chain

^{*}Begin counting from either end

Quick Review of Structural Models and Diagrams

	separate C's	Atoms and Bonds	No H's ↓	C's at end of line segment
Molecular Formula	Expanded Molecular Formula	Complete Structural Diagram	Condensed Structural Diagram	Line Diagram
C ₃ H ₈	CH ₃ CH ₂ CH ₃	H-C-C-C-H	- C - C - E-	

Organic Families

Organic families are classed according to functional groups. Functional groups are areas on a molecule that are reactive.

Hydrocarbons with general formula C_nH_{2n+2} contain all single bonds and are called **alkanes**.

Ex.

Hydrocarbons with general formula C_nH_{2n} contain one double bond (alkenes) or are cyclic (cycloalkanes).

"closed ring"

Hydrocarbons with a general formula C_nH_{2n-2} have a triple bond (alkynes) or are cyclic with a double bond (cycloalkenes).

The prefixes for compounds or alkyl groups with one to 10 carbons are shown in the chart on p. 695.

	<u>IUPAC</u>	<u>ALKYL</u>	<u>ALKYL</u>
FORMULA	<u>NAME</u>	<u>GROUP</u>	<u>NAME</u>
CH_4	meth ane	CH_3	meth yl
C_2H_6	eth ane	C_2H_5	eth yl
C_3H_8	prop ane	C_3H_7	prop yl
C_4H_{10}	but ane	C_4H_9	but yl

The remaining 6 follow latin naming.

Isomers

Structural Isomers - compounds with the same molecular formula, but atoms are connected differently

*Find longest chain

*Begin counting from either end

Ex. C₄H₁₀

How many isomers can be drawn for C₂H₆?

(5H12

Isomers

H H H H H

1 1 1 1 1

Ex. H-C-C-C-C-H

1 1 1 1 1

H H H H H

Homework

Structural Diagram Worksheet

Draw all the structural isomers for C₆H₁₄.