| Molecular
Formula | Expanded
Molecular
Formula | Complete
Structural
Diagram | Condensed
Structural
Diagram | Line
Diagram | |----------------------|----------------------------------|-----------------------------------|------------------------------------|-----------------| | C7H16 | CH3CH2CH4
CH3CH2CH(| (C2H5)(H2CH3
(2H5)2 | - Ċ -
- Ċ -
- Ċ - C - Ċ - | - | | | CH (C2H5) 3 | | • | ## Isomers of C₆H₁₄ ## Isomers of C7H16 ## **Organic Families** Organic families are classed according to functional groups. Functional groups are areas on a molecule that are reactive. Hydrocarbons with general formula C_nH_{2n+2} contain all single bonds and are called alkanes. Ex. Hydrocarbons with general formula C_nH_{2n} contain one double bond (alkenes) or are cyclic (cycloalkanes). Hydrocarbons with a general formula C_nH_{2n-2} have a triple bond (alkynes) or are cyclic with a double bond (cycloalkenes). | CH4
C2H6
C3H8 | C5H12
C6H14 | CnH _{2n+2} | |---------------------|----------------|---------------------| | C3H8
C4H10 | C7H16 | | Match each of the following descriptions with the correct chemical formula. C₁₂H₂₆ closed ring, two triple bonds $C_{10}H_{20}$ all single bonds (alkane) C₈H₁₄ cycloalkane C₉H₁₄ C₃₀H₅₂ triple bond and double bond two double bonds ## Isomers of C₈H₁₈ CnHzn+2 -s only single bonds Isomers of C₆H₁₂ CnH2n -> one double bord or cycloalkane