Molecular Formula	Expanded Molecular Formula	Complete Structural Diagram	Condensed Structural Diagram	Line Diagram
C7H16	CH3CH2CH4 CH3CH2CH((C2H5)(H2CH3 (2H5)2	- Ċ - - Ċ - - Ċ - C - Ċ -	-
	CH (C2H5) 3		•	

Isomers of C₆H₁₄

Isomers of C7H16

Organic Families

Organic families are classed according to functional groups. Functional groups are areas on a molecule that are reactive.

Hydrocarbons with general formula C_nH_{2n+2} contain all single bonds and are called alkanes.

Ex.

Hydrocarbons with general formula C_nH_{2n} contain one double bond (alkenes) or are cyclic (cycloalkanes).

Hydrocarbons with a general formula C_nH_{2n-2} have a triple bond (alkynes) or are cyclic with a double bond (cycloalkenes).

CH4 C2H6 C3H8	C5H12 C6H14	CnH _{2n+2}
C3H8 C4H10	C7H16	

Match each of the following descriptions with the correct chemical formula.

C₁₂H₂₆ closed ring, two triple bonds

 $C_{10}H_{20}$ all single bonds (alkane)

C₈H₁₄ cycloalkane

C₉H₁₄ C₃₀H₅₂ triple bond and double bond

two double bonds

Isomers of C₈H₁₈

CnHzn+2

-s only single bonds

Isomers of C₆H₁₂

CnH2n

-> one double bord or cycloalkane