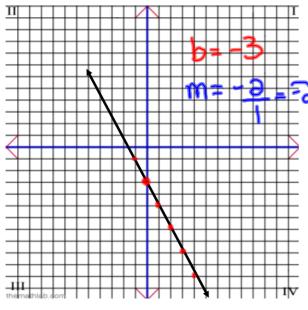

Linear Equations: y = mx + bSlope

A linear relation can be defined by its

slope and any point on the line.


Examine the graphs of the linear relations shown on the next page.

slope of 3 y-intercept of 0 Equation: y = 3x

slope of 3 y-intercept of 2 Equation: 3x + 2

Notice how the slope and the y-intercept relate to the equation.

slope of -2 y-intercept of -3

Equation: y = -2x - 3

Any linear relation can be expressed as y = mx + b, where m is the slope of the relation and b is the y-intercept.

This is called the slope y-intercept form of an equation.

Example 1:

Determine the slope and y-intercept of the line given by 3x - 4y = 12.

Solution:

$$3x - 4y = 12$$

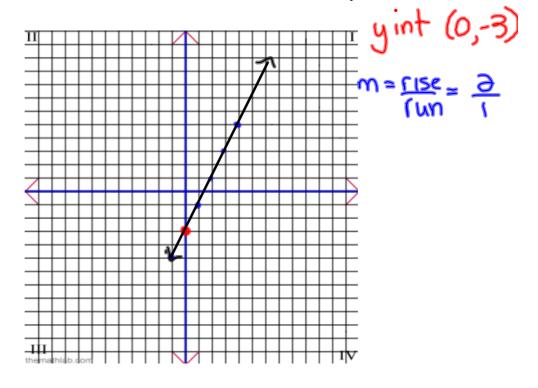
$$- 4y = -3x + 12$$

$$y = 3x - 3$$

Thus, the slope is ¾ and the y-intercept is -3.

Example 2:

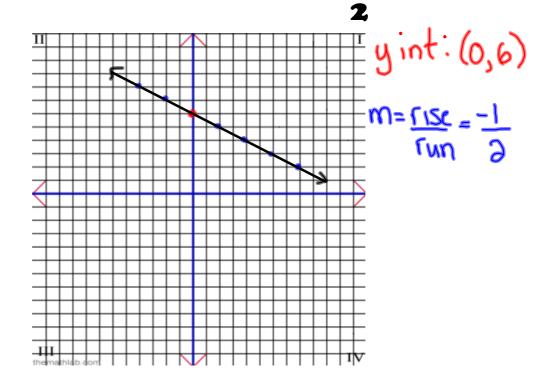
The lines represented by y + 2 = 2(x - 3) + kx and 3(x + 2) = 3 + y have equal slopes. Find the value of "k".


Solution:

Write each equation in the slope y-intercept form and compare the slopes.

$$y + 2 = 2(x-3) + kx$$

 $y + 2 = 2x - 6 + kx$
 $y = (2x + kx) - 8$
 $y = (2 + k)x - 8$
 $y = (3+k) + 8$
 $y = 3x + 3$
 $y = 3x + 3$
 $y = 3x + 3$
If the slopes are equal then, $2 + k = 3$


Example 3:

Sketch the line which has: m = 2, b = -3

Example 4:

Sketch the line which has: $\mathfrak{m} = -1$, $\mathfrak{b} = 6$


```
8. A(-1,1); B(1,p+4); C(-1-p,-4)

If these points are collinear, m_{AB} = m_{BC}.

m_{AB} = \frac{y_2 - y_1}{x_2 - x_1} \qquad m_{BC} = \frac{y_2 - y_1}{x_2 - x_1}
= \frac{y_2 - y_1}{x_2 - x_1} \qquad = \frac{y_2 - y_1}{x_2 - x_1}
= \frac{y_2 - y_1}{x_2 - x_1} \qquad = \frac{y_2 - y_1}{x_2 - x_1}
= \frac{y_2 - y_1}{x_2 - x_1} \qquad = \frac{y_2 - y_1}{x_2 - x_1}
= \frac{y_2 - y_1}{x_2 - x_1} \qquad = \frac{y_2 - y_1}{x_2 - x_1}
= \frac{y_2 - y_1}{x_2 - x_1} \qquad = \frac{y_2 - y_1}{x_2 - x_1}
= \frac{y_2 - y_1}{x_2 - x_1} \qquad = \frac{y_2 - y_1}{x_2 - x_1}
= \frac{y_2 - y_1}{x_2 - x_1} \qquad = \frac{y_2 - y_1}{x_2 - x_1}
= \frac{y_2 - y_1}{x_2 - x_1} \qquad = \frac{y_2 - y_1}{x_2 - x_1}
= \frac{y_2 - y_1}{x_2 - x_1} \qquad = \frac{y_2 - y_1}{x_2 - x_1}
= \frac{y_2 - y_1}{x_2 - x_1} \qquad = \frac{y_2 - y_1}{x_2 - x_1}
= \frac{y_2 - y_1}{x_2 - x_1} \qquad = \frac{y_2 - y_1}{x_2 - x_1}
= \frac{y_2 - y_1}{x_2 - x_1} \qquad = \frac{y_2 - y_1}{x_2 - x_1}
= \frac{y_2 - y_1}{x_2 - x_1} \qquad = \frac{y_2 - y_1}{x_2 - x_1}
= \frac{y_2 - y_1}{x_2 - x_1} \qquad = \frac{y_2 - y_1}{x_2 - x_1}
= \frac{y_2 - y_1}{x_2 - x_1} \qquad = \frac{y_2 - y_1}{x_2 - x_1}
= \frac{y_2 - y_1}{x_2 - x_1} \qquad = \frac{y_2 - y_1}{x_2 - x_1}
= \frac{y_2 - y_1}{x_2 - x_1} \qquad = \frac{y_2 - y_1}{x_2 - x_1}
= \frac{y_2 - y_1}{x_2 - x_1} \qquad = \frac{y_2 - y_1}{x_2 - x_1}
= \frac{y_2 - y_1}{x_2 - x_1} \qquad = \frac{y_2 - y_1}{x_2 - x_1}
= \frac{y_2 - y_1}{x_2 - x_1} \qquad = \frac{y_2 - y_1}{x_2 - x_1}
= \frac{y_2 - y_1}{x_2 - x_1} \qquad = \frac{y_2 - y_1}{x_2 - x_1}
= \frac{y_2 - y_1}{x_2 - x_1} \qquad = \frac{y_2 - y_1}{x_2 - x_1}
= \frac{y_2 - y_1}{x_2 - x_1} \qquad = \frac{y_2 - y_1}{x_2 - x_1}
= \frac{y_2 - y_1}{x_2 - x_1} \qquad = \frac{y_2 - y_1}{x_2 - x_1}
= \frac{y_2 - y_1}{x_2 - x_1} \qquad = \frac{y_2 - y_1}{x_2 - x_1}
= \frac{y_2 - y_1}{x_2 - x_1} \qquad = \frac{y_2 - y_1}{x_2 - x_1}
= \frac{y_2 - y_1}{x_2 - x_1} \qquad = \frac{y_2 - y_1}{x_2 - x_1}
= \frac{y_2 - y_1}{x_2 - x_1} \qquad = \frac{y_2 - y_1}{x_2 - x_1}
= \frac{y_2 - y_1}{x_2 - x_1} \qquad = \frac{y_2 - y_1}{x_2 - x_1}
= \frac{y_2 - y_1}{x_2 - x_1} \qquad = \frac{y_2 - y_1}{x_2 - x_1}
= \frac{y_2 - y_1}{x_2 - x_1} \qquad = \frac{y_2 - y_1}{x_2 - x_1}
= \frac{y_2 - y_1}{x_2 - x_1} \qquad = \frac{y_2
```