Check Homework

$$(+)_3$$
 $(-)_1$
 $(-)_2$
 $(-)_3$
 $(+)_3$

$$CH_{3} - CH = C(CH_{3}) - C(CH_{3})_{2} - CH_{3}$$

$$-\frac{1}{C} - \frac{1}{C_{2}} = C_{3} - \frac{1}{C_{4}} - CH_{3}$$

$$CH_{3} - CH_{3}$$

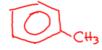
3,4,4-trimethyl-2-pentene

3 2-methyl-1-pentene + hydragen -> 2-methylpentan

Aromatic Compounds

Historically aromatic compounds were organic compounds with an odour. Today aromatic compounds are defined as benzene (C_6H_6) and all carbon compounds that contain benzene-like structures.

Although the molecular formula for benzene suggests 3 double bonds between three single bonds, empirical evidence shows:

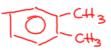

- (i) the ring is relatively unreactive we know multiple bonds are reactive
- (ii) The C--C bonds are of equal length and strength [EMPIRICAL EVIDENCE DOES NOT MATCH THEORY]

The evidence can only be explained if the pi electrons are delocalized (do not stay with any one carbon) and circle in a donut shaped cloud above and below the plane of the sp² C-C bonds.

Substituted Benzenes

Mono- substituted benzene structures

Ex.

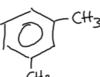


methylbenzene

No number is needed for mono-substitued benzenes because all ring positions are identical.

Simple Di - substituted benzenes

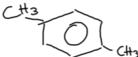
Ex.



When two groups are attached to benzene, the ring is numbered to give the lower numbers to the branches.

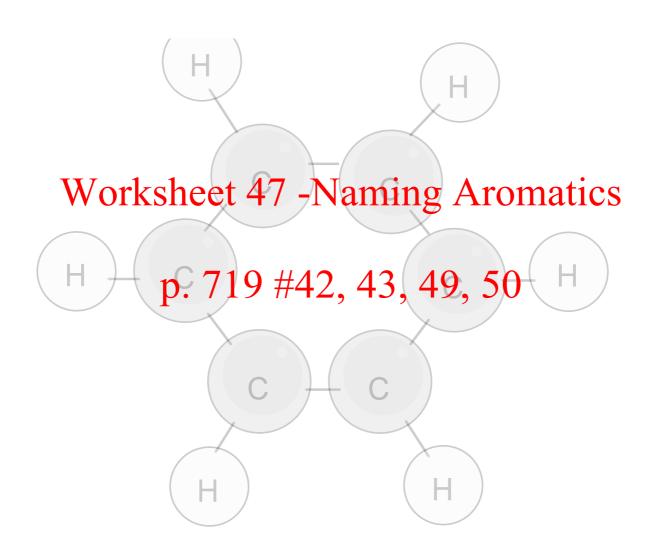
1,2-dimethylbenzene or ortho-dimethylbenzene

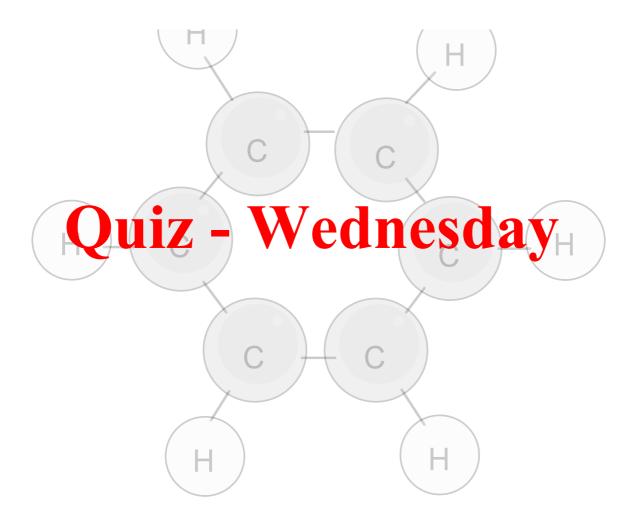
The prefix meta is used for 1,3 di-substituted benzenes.


Ex.

1,3-dimethylbenzene or meta-dimethylbenzene

The prefix para is used for 1,4 di- substituted benzenes.


Ex.



1,4-dimethylbenzene or para-dimethylbenzene

When the benzene ring itself is considered as a branch, it is given the name phenyl

Ex.

