Midpoint of a Line Segment

If M is the coordinate of the midpoint of a line segment joining $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$, then the coordinates of M are given by:

$$
M=\left(\frac{x_{2}+x_{1}}{2}, \frac{y_{2}+y_{1}}{2}\right)
$$

Example

Find the midpoint between $S(3,-4)$ and $\mathbf{T}(-15,2)$.

Solution

$$
\begin{aligned}
\left(x_{1}, y_{1}\right)= & (3,-4) \quad\left(x_{2}, y_{2}\right)=(-15,2) \\
M_{S T} & =\left(\frac{x_{2}+x_{1}}{2}, \frac{y_{2}+y_{1}}{2}\right) \\
& =\left(\frac{-15+3}{2}, \frac{2+-4}{2}\right) \\
& =\left(\frac{-12}{2}, \frac{-2}{2}\right) \\
& =(-6,-1)
\end{aligned}
$$

The midpoint is therefore $(-6,-1)$.

Example 2

The midpoint of $A B$ is given by $M(-1,3)$ for the points $A(-4,2)$ and $B(x, y)$. Find x and y.

Solution

$$
\begin{array}{rlrl}
-1 & =\frac{(x+-4)}{2} & 3 & =\frac{(y+2)}{2} \\
(-1)(2) & =x-4 & (3)(2) & =y+2 \\
-2 & =x-4 & 6 & =y+2 \\
-2+4 & =x & 6-2 & =y \\
2 & =x & 4 & =y
\end{array}
$$

Therefore, point B is $(2,4)$.

