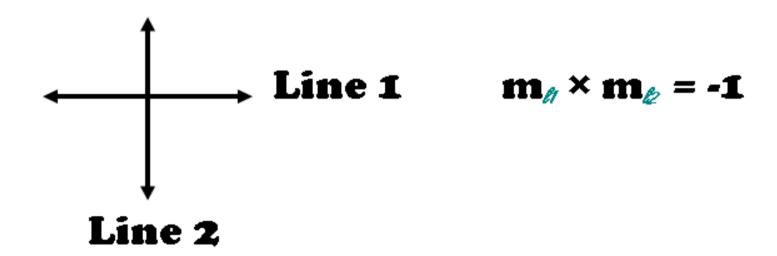
Parallel & Perpendicular Lines

Parallel Lines


Two lines are parallel if they have the same slope.

$$\mathbf{m}_{\ell \ell} = \mathbf{m}_{\ell \ell}$$

Perpendicular Lines

Two lines are perpendicular if the product of their slopes is -1. In other words, the slopes of the lines are negative reciprocals of each other.

Example 1

Show that the line through A(0,3) and B(1,5) is parallel to the line through C(1,4) and D(2,6).

Solution:

Find the slope of each pair of points.

$$m_{AB} = \underline{y_2 - y_1}$$
 $m_{CD} = \underline{y_2 - y_1}$ $x_2 - x_1$ $x_2 - x_1$ $= \underline{5 - 3}$ $= \underline{6 - 4}$ $2 - 1$ $= \underline{2}$ 1 $= 2$ $= 2$ $= 2$

 $m_{AB} = m_{CD}$, therefore these two lines are parallel.

Example 2

Show that the line through A(-1, -2) and B(-3, -5) is perpendicular to the line through C(1, 0) and D(4, -2).

Solution:

$$m_{AB} = \underline{y_2 - y_1}$$
 $m_{CD} = \underline{y_2 - y_1}$ $x_2 - x_1$ $x_2 - x_1$ $= \underline{-5 - -2}$ $= \underline{-2 - 0}$ $4 - 1$ $= \underline{-3}$ $= \underline{-2}$ 3 $= \underline{3}$

m_{AB} is the negative reciprocal of m_{CD}, therefore the two lines are perpendicular.

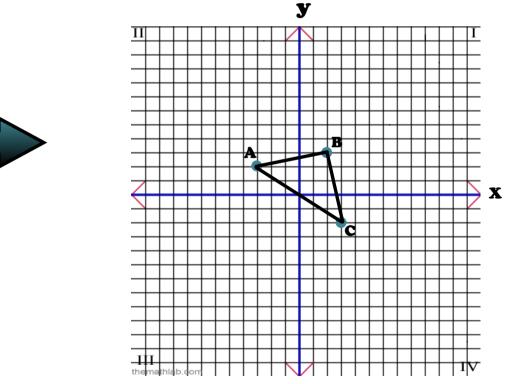
Example 3

The vertices of ▲ABC are A(-3, 2), B(2, 3) and C(3, -2). Determine whether ▲ABC is a right triangle.

Solution

Calculate the slope of each side of ABC.

$$m_{AB} = \underbrace{y_2 - y_1}_{X_2 - X_1} \quad m_{BC} = \underbrace{y_2 - y_1}_{X_2 - X_1} \quad m_{AC} = \underbrace{y_2 - y_1}_{X_2 - X_1}$$


$$= \underbrace{3 - 2}_{2 - \cdot 3} \quad = \underbrace{-2 - 3}_{3 - \cdot 2} \quad = \underbrace{-2 - 2}_{3 - \cdot 3}$$

$$= \underbrace{1}_{5} \quad = \underbrace{-5}_{1} \quad = \underbrace{-4}_{6}$$

$$= -5 \quad = \underbrace{-2}_{3}$$

Since m_{AB} is the negative reciprocal of m_{BC} , we know that AB and BC are perpendicular to each other.

ABC is therefore a right triangle.

