Slope

Remminders:

4. Ghe symbol for slope is m.
5. A line thert mises from left to right hers a positive slope -.-/
6. A line thert rises from right to left heas a negertive slope --.

Slope cem be defined in 3 weys.
1t com be defined as rise, or Δy,

$$
\operatorname{ran} \quad \Delta x
$$

which is read as delter y over delter x.
In this course we will be referming to
slope as:

Sample Calculation

Example 1:

Step 1: Select 2 points from the graph.
Point 1-($\left.\mathrm{x}_{1}, \mathrm{y}_{1}\right)$-(,)
Point 2-($\left.\mathrm{x}_{2}, \mathrm{y}_{2}\right)$-(,)

$$
\text { Step 2: } \begin{aligned}
& m= y_{2}-y_{1} \\
& x_{2}-x_{1}
\end{aligned}
$$

$$
m=
$$

$$
m=
$$

Example 2:

Determine the slope of the following line: $2 x+y=6$

Step 1: Rearrange into the form $\mathrm{y}=\mathrm{mx}+\mathrm{b}$

Step 2: Locate the value of "m"

The slope of the line is therefore \qquad .

Example 3:

Show that $P(3,2), Q(-3,-2)$, and $R(6,4)$ are collinear. What does "collinear" mean???

Step1: Find the slope of all three pairs of points.

$$
\begin{array}{ccc}
\mathrm{m}_{\mathrm{PQ}}=\frac{y_{2}-y_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}} & \mathrm{~m}_{\mathrm{QR}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & \mathrm{~m}_{\mathrm{PR}}=\frac{y_{2}-y_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}} \\
& & \mathrm{~m}_{\mathrm{QR}}= \\
\mathrm{m}_{\mathrm{PQ}}= & \mathrm{m}_{\mathrm{PR}}=
\end{array}
$$

Step2: If the slope of all three pairs of

 points is the same, the points lie on the same straight line. Thus, the 3 points are collinear.