Independent Events

When tossing a coin twice, the outcome of the second toss is not affected by the outcome of the first toss. In other words, the 2 events are independent.

When a coin is tossed twice in succession, there are 4 possible outcomes: HH, HT, TH, TT.

Therefore, the probability of tossing 2 heads in a row is:

P(H and H) =

The theoretical probability, ¼ appears to be the product of the two individual probabilities.

This result is true in general!!!

Example 1: A coin is tossed and a die is rolled. What is the probability of tossing a tail and rolling an even number?

Solution: P(T and even) =
$$P(Tail) \times P(Even)$$

= $\frac{1}{2} \times \frac{3}{6}$

= $\frac{3}{13} \times \frac{3}{6}$

= $\frac{3}{13} \times \frac{3}{6}$

Howto reduce Fractions

= $\frac{18}{30} \times \frac{3}{5}$
 $= \frac{3}{13} \times \frac{3}{6} \times \frac{3}{6}$

Example 2: A coin is tossed and a die is rolled twice. What is the probability of tossing a <u>tail</u> and rolling two <u>even numbers</u>?

Solution: P(T and even and even)
$$= P(Tail) \times P(even) \times P(even)$$

$$= \frac{1}{2} \times \frac{3}{6} \times \frac{3}{6}$$

$$= \frac{9}{72}$$

$$= \frac{9}{72}$$

$$= \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3}$$

Exercise 3.12

1
3 abcd
5 abcd

$$P(C) = 0.3$$

 $P(D) = 0.15$
 $P(D) = 0.15$
 $P(C) \times P(D)$
 $P(C) \times P(D)$