(2)

$$
\begin{gathered}
V=\pi r^{2} h A= \\
1000=\pi r^{2} h \\
h=\frac{1000}{\pi r^{2}}
\end{gathered}
$$

Let $r=$ the radius

$$
A=2 \pi r^{2}+2 \pi r h^{\text {with } a} \begin{gathered}
\text { single } \\
\text { variable }
\end{gathered}
$$

$$
\begin{aligned}
& 2 \pi r^{2}+2 \pi /\left[\frac{1000}{\pi r^{2}}\right] \\
& A=2 \pi r^{2}+2000 r^{-1} \\
& A^{\prime}=4 \pi r-\frac{2000}{r^{2}} \\
& \frac{2000}{r^{2}}=4 \pi r \\
& 4 \pi r^{3}=2000 \\
& r^{3}=\frac{500}{\pi} \\
& r=\sqrt[3]{\frac{500}{\pi}} \doteq 5.41 \mathrm{~cm}
\end{aligned}
$$

(10)

$$
\begin{aligned}
& V=\pi r^{2} h \\
& V=\pi r^{2}\left[\frac{169.56-2 \pi r^{2}}{2 \pi /}\right]
\end{aligned}
$$

$$
A=169.56 \mathrm{~cm}^{2}
$$

$$
2 \pi r^{2}+2 \pi r h=169.56
$$

$$
V=\frac{169.56 r-2 \pi r^{3}}{\partial}
$$

$$
2 \pi r h=169.56-2 \pi r^{2}
$$

$$
V=84.78 r-\pi r^{3}
$$

$$
h=\frac{169.56-\partial \pi r^{2}}{\partial \pi r}
$$

$$
\begin{aligned}
& V^{\prime}=84.78-3 \pi r^{2} \\
& O=84.78-3 \pi r^{2}
\end{aligned}
$$

$$
h=\frac{189.56-2 \pi(3)^{2}}{2 \pi(3)}
$$

$$
h=6 \mathrm{~cm}
$$

$$
\begin{aligned}
3 \pi r^{2} & =84.78 \\
r^{2} & =9 \\
r & = \pm 3
\end{aligned}
$$

$$
r=3 \mathrm{~cm}
$$

$$
\begin{aligned}
\text { Max Volume } & =\pi r^{2} h \\
& =\pi(3)^{2}(6) \\
& =54 \pi \\
& =169.56 \mathrm{~cm}^{3}
\end{aligned}
$$

(1)c)

$$
\begin{aligned}
& y=x^{5}+8 x^{3}+x \\
& y^{\prime}=5 x^{4}+24 x^{2}+1
\end{aligned}
$$

increasing on $(-\infty, \infty)$
y^{\prime} is always positive. The function is always increasing

$$
V=1000 \mathrm{~cm}^{3}
$$

Let $r=$ radius

$$
\begin{aligned}
& \text { Express } \\
& A=2 \pi r^{2}+2 \pi r h \text { single } \\
& \text { variable } \\
& A=2 \pi r^{2}+2 \pi p\left[\frac{1000}{\pi r^{2}}\right] \\
& A=2 \pi r^{2}+2000 r^{-1} \\
& A^{\prime}=4 \pi r-\frac{2000}{r^{2}} \\
& \frac{2000}{r^{2}}=4 \pi r \\
& 4 \pi r^{3}=2000 \\
& r^{3}=\frac{500}{\pi} \\
& r=\sqrt[3]{\frac{500}{\pi}} \doteq 5.4 \mathrm{~cm} \\
& \xrightarrow[(1)]{\substack{\text { (1) } \\
-l^{\text {min }}}}
\end{aligned}
$$

(ㄱ)

Let $x=$ the distance from B to P

$$
\begin{gathered}
T=\frac{d}{5} \\
T=\frac{\sqrt{x^{2}+25}}{3}+\frac{10-x}{5} \\
T=\frac{1}{3}\left(x^{2}+25\right)^{1 / 2}+\frac{10}{5}-\frac{1}{5} x \\
T_{=}^{\prime}=\frac{1}{36}\left(x^{2}+25\right)^{-1 / 2}(2 x)-\frac{1}{5}
\end{gathered}
$$

always" +"

$$
\begin{aligned}
& \frac{1}{5}=\frac{x}{3 \sqrt{x^{2}+25}} \\
& \left(5 x^{2}=\left(\sqrt[3]{x^{2}+25}\right)^{2} \swarrow \begin{array}{l}
\text { square } \\
\text { both ides } \\
\text { sid }
\end{array}\right. \\
& 25 x^{2}=9\left(x^{2}+25\right)^{2} \\
& 25 x^{2}=9 x^{2}+225 \\
& 16 x^{2}=225 \\
& x^{2}=\frac{225}{16}
\end{aligned}
$$

\therefore You should head to a point 3.75 Km east of B.

(8)

$$
\begin{gathered}
P=2 x+y \\
500=2 x+y \\
500-2 x=y
\end{gathered}
$$

$$
500-2(185)=y
$$

$$
500-250=y
$$

$$
250 m=y
$$

$\therefore 125 m \times 250 m$

$$
\begin{aligned}
& A=x y \text { Kexpress } \\
& \text { as a singlı } \\
& \text { variable }
\end{aligned}
$$

