SOLUTIONS $\Rightarrow M_{A X I M U M / M I N I M U M ~ P R O B L E M S ~}^{\text {IN }}$
1.

$$
h=-5 t^{2}+50 t+40
$$

To find the solutions to " a " and " b " we will need to locate the vertex by completing the square.
(1) $h-40=-5 t^{2}+50 t$
(2) $h-40=-5\left(t^{2}-10 t\right)$
(3) $h-40-125=-5\left(t^{2}-10 t+25\right)$
(4) $h-165=-5(t-5)^{2}$
(5)

$$
\begin{aligned}
& h=-5(t-5)^{2}+165 \text { (SF) } \\
& \text { Vertex }(5,165)
\end{aligned}
$$

a) It would take the object 5 seconds to reach its maximum height.
b) The maximum height reached by the object is 165 m .
(1) $\quad h=-5 t^{2}+50 t+40$
(1) $h-40=-5 t^{2}+50 t$
(2) $h-40=-5\left(t^{2}-10 t\right) \quad \int^{-10 \times \frac{1}{2}=(-5)^{2}=25}$
(3) $h-40-125=-5\left(t^{2}-10 t+25\right)$
(4) $h-16 s=-5(t-5)^{2}$
(5) $h=-5(t-5)^{2}+165 \quad$ (Standard)
or (5) $-\frac{1}{5}\binom{h-165}{k}=-5\left(t-\frac{5}{h}\right)^{k} \quad$ (Transformational)
vertex: $(h, k)=(5,165)$
Timeto max height reach max height
a) 5 seconds
b) 165 m
2. $h=-4.9 t^{2}+9.8 t$
(2) $h=-4.9\left(t^{2}-2 t\right)$
(3) $h-4.9=-4.9\left(t^{2}-2 t+1\right)$
(4) $h-4.9=-4.9(t-1)^{2}$
(5)

$$
h=-4.9(t-1)^{2}+4.9(S F)
$$

Vertex ($1,4.9$)

a) The ball reaches a maximum height of 4.9 m after 1 second.
b) After 1 bounce $\Rightarrow 60 \%$ of 4.9 m

$$
\begin{aligned}
& =0.60 \times 4.9 \mathrm{~m} \\
& =2.9 \mathrm{Mm} .
\end{aligned}
$$

After 2 bounces $\Rightarrow 60 \%$ of 294 m

$$
\begin{aligned}
& =0.60 \times 2.9 \mathrm{~mm} \\
& =1.76 \mathrm{~m}
\end{aligned}
$$

Two bounces later, the ball will reach a maximum height of 1.76 m .
3. $h=-4.9 t^{2}+19.6 t$
(2) $h=-4.9\left(t^{2}-\mu t\right)$
(3) $h-19.6=-4.9\left(t^{2}-4 t+4\right)$
(4) $h-19.6=-4.9(t-2)^{2}$
(5) $h=-4.9(t-2)^{2}+19.6$ (SF)
$\operatorname{Vertex}(\underset{\lambda}{2}, 19.6)$

The fire hydrant reaches a maximum height of 19.6 m .

(1) $P=24 \mathrm{~m}$
(2) width $=x$
(3) length $=\frac{P-\# \text { of widths }}{\# \text { of lengths }}=\frac{24-2 x}{1}=24-2 x$
(4)

$$
\begin{aligned}
& A=x(24-2 x) \\
& A=24 x-2 x^{2} \\
& A=-2 x^{2}+24 x \quad \text { (General) } \\
& A=-2\left(x^{2}-12 x\right) \\
& A-72=-2\left(x^{2}-12 x+36\right) \\
& A-72=-2(x-6)^{2} \\
& A=-2(x-6)^{2}+72
\end{aligned}
$$

Vertex: $(6,72)$

$$
\begin{aligned}
\text { Length } & =24-2 x \\
& =24-2(6) \\
& =24-12 \\
& =12
\end{aligned}
$$

The dimensions are $12 m \times 6 m$

$$
P=24 \mathrm{~m}
$$

$$
\text { Let } x=\text { width }
$$

$$
\begin{aligned}
& 2 H-2 x=\text { length } \\
& \text { Area }=\text { length }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Area }=1 \text { length } \times \text { width } \\
& u=(24-2 x)(x)
\end{aligned}
$$

$$
\rightarrow \text { Place in General Form: }
$$

$$
\begin{aligned}
& y=24 x-2 x^{2} \quad \text { (Rearrange) } \\
& y=-2 x^{2}+24 x \text { (GF) }
\end{aligned}
$$

$$
y=-2 x^{2}+24 x(G F)
$$

(2) $y_{72}=-2\left(x^{2}-12 x\right)$
(3) $y-72=-2\left(x^{2}-12 x+36\right)$
(5)

We now know that the maximum area of $72 \mathrm{~m}^{2}$ occurs when the width is 6 m .

$$
\begin{aligned}
\text { To determine the length: } & \frac{72 \mathrm{~m}^{2}}{6 \mathrm{~m}} \\
= & 12 \mathrm{~m}
\end{aligned}
$$

Therefore, the dimensions of his flower garden will be $6 \mathrm{~m} \times 12 \mathrm{~m}$.
5.

$$
\begin{aligned}
& P=100 \mathrm{~m} \\
& \text { Let } x=\text { width } \\
& \text { Then } 100-2 x=1 e n g t h \\
& \text { Area }=1 \text { length } x \text { width } \\
& y=(100-2 x)(x) \\
& \& \text { Place in General Form. } \\
& y=100 x-2 x^{2} \text { (Rearrange) } \\
& y=-2 x^{2}+100 x \text { (GF) }
\end{aligned}
$$

(2) $y=-2\left(x^{2}-50 x\right)$
(3) $y-1250=-2\left(x^{2}-50 x+625\right)$
(4) $y-1250=-2(x-25)^{2}$
$y=-2(x-25)^{2}+1250(3 i)$
Vertex $(25,1250)$
$\begin{array}{cc}\text { W } & \text { A } \\ + & \text { d } \\ h & \end{array}$
We now know that the maximum area of $1250 \mathrm{~m}^{2}$ occurs when the width is 25 m .
To determine the length: $\frac{1250 \mathrm{~m}^{2}}{25 \mathrm{~m}}$
\Rightarrow Dimensions of swimming area $=50 \mathrm{~m}$ will be $50 \mathrm{~m} \times 25 \mathrm{~m}$.

Review \# 1
(1) $(y+3)=(x-2)^{2} \rightarrow$ Transformational

$$
y=(x-2)^{2}-3 \rightarrow \text { Standard }
$$

Vertex: $(2,-3)$ Quadrant IV
(2) $\frac{1}{3}(y-2)=(x+3)^{2} \rightarrow$ Transformational

Vertex: $(-3,2)$

$$
y=3(x+3)^{2}+2 \rightarrow \text { Standard }
$$

