Multi-Step Energy Calculations

```
Step 1: Find H_r general
```

- -use Hess' law
- -from equation
- $-\Delta H = nH$

Step 2: Find n (specific)

- -use mass (molar mass)
- -use calorimetry
- -use $n = \Delta H/H^o$

Step 3: Find ΔH (specific), mass, ΔT

- -use $\Delta H = nH^{o}$
- -use calorimetry

Sample Problem

Ex.
$$2\text{NaHCO}_{3(s)} + 129.2\text{kJ} \longrightarrow \text{Na}_2\text{CO}_{3(s)} + \text{CO}_{2(g)} + \text{H}_2\text{O}_{(g)}$$

What quantity of energy, ΔH_r is required to decompose 100. kg of NaHCO_{3(s)}? Shr = Entho-Entho

Calculate the mass of methane combusted when 3700. kJ of energy is released according to the following reaction.

$$CH_{4(g)} + 2O_{2(g)} \Rightarrow CO_{2(g)} + 2H_2O_{(g)} + 802.7kJ$$

/ Other = Enthro- Enthro

Stop3: m (specific)

Multi-Step Energy Calculations can be used when energy produced in one chemical reaction is used to heat another substance. These calculations are very similar to calorimetry calculations.

total enthalpy change = quantity of heat

$$\Delta H_r = q$$

Sample Problem

What mass of octane is completely burned during the heating of 20.L of aqueous ethylene glycol automobile coolant from -10°C to 70°C? The volumetric heat capacity of aqueous ethylene glycol is 3.7 kJ/L°C.

Ex.
$$2C_8H_{18(1)} + 25O_{2(g)}$$
 \longrightarrow $18H_2O_{(s)} + 16CO_{2(g)}$

Worksheet #1-5