
Math 11

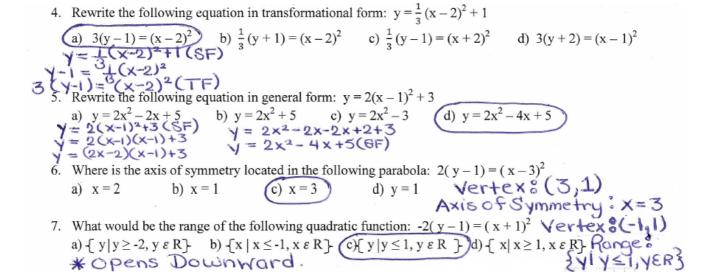
Quadratics #2 - Review #1

1. Which *quadrant* is the vertex of $(y + 3) = (x-2)^2$ located in? a) I b) II c) III

- 2. Which *quadrant* is the vertex of $\frac{1}{3}(y-2) = (x+3)^2$ located in? a) I b) II c) III d) IV

- Vertex: (-3,2)=>QUADRANTI
- 3. Rewrite the following equation in standard form: $-4(y-1) = x^2$

a)
$$y = -4x^2 + 1$$
 (b) $y = -\frac{1}{4}x^2 + 1$
 $-4(y-1) = x^2(TF)$
 $y = -\frac{1}{4}x^2 + 1$ (SF)

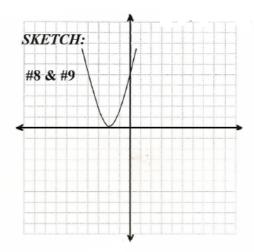

c) $y = 4x^2 - 1$ d) $y = \frac{1}{4}x^2 + 1$

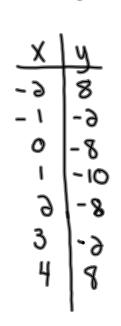
Standard:
$$y = \alpha(x-h)^3 + K$$

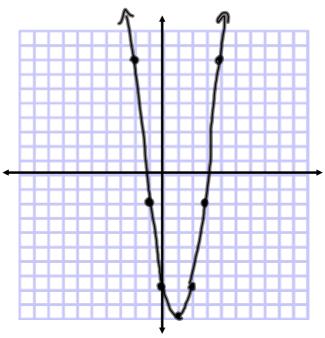
Transformational:
$$\frac{1}{a}(y-K)=(x-h)^2$$

3
$$-4(y-1) = x^3$$

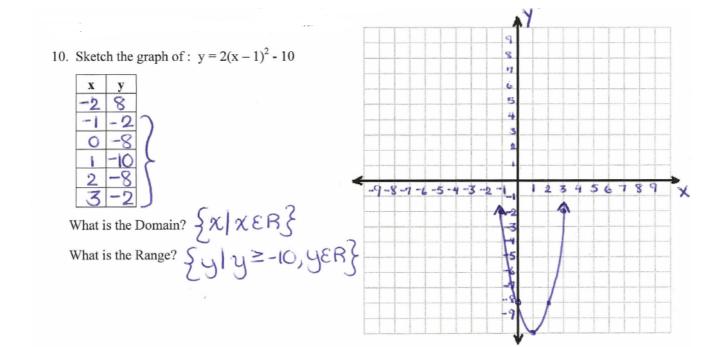
 $-4(y-1) = (x-0)^3$
 $y-1 = -\frac{1}{4}(x-0)^3$
 $y = -\frac{1}{4}(x-0)^3 + 1$


$$y = -\frac{1}{4} \times^{9} + 1$$


8. Given this graph and its equation: $\frac{1}{a}(y-k) = (x-h)^2$

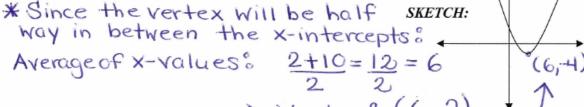

What would happen if "h" was changes? The graph would:

- a) move sideways
- b) move up or down
- c) be reflected in the x-axis
- d) be stretched
- 9. What would happen if "k" was changed? The graph would:
 - a) move sideways
- (b) move up or down
- c) be reflected in the x-axis
- d) be stretched


$$01 - (1-x)6 = \mu$$

Domain: {x | XER}

Range: {y|y≥-10,yER}


11. The x-intercepts of a parabola are (2, 0) and (10, 0). Which of the following points could be the vertex?

a) (12, 0)

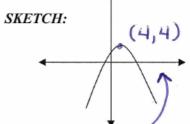
(b) (6, -4)

c) (6, 4)

d) (8, -4)

=> Vertex: (6,?)

** 2 possible solutions -> check sketch!


12. The x-intercepts of a parabola are (-3, 0) and (11, 0). Which of the following points could be the vertex?

a) (8, -4)

b) (7, 3)

(c) (4, 4) d) (4, -4)

Average of x-values: -3+11=8=4 => Vertex: (4,?)

* 2 possible solutions -> check sketch!

13. Rewrite the following equation in transformational form:
$$y = 3(x - 1)^2 + 2$$

a) $(y + 2) = 3(x - 1)^2$ (b) $\frac{1}{3}(y - 2) = (x - 1)^2$ (c) $3(y - 2) = \frac{1}{3}(x - 1)^2$ (d) $3y - 2 = (x - 1)^2$
 $y = 3(x - 1)^2 + 2$ (SF)

 $y - 2 = 3(x - 1)^2$

14. Rewrite the following equation in transformational form: $y = 3x^2 - 12x + 5$

(a) $\frac{1}{3}(y + 7) = (x - 2)^2$ (b) $3(y - 7) = (x - 2)^2$ (c) $-\frac{1}{3}(y - 7) = (x + 2)^2$ (d) $3(y + 2) = (x - 7)^2$
 $y = 3(x - 1)^2 + 2$ (GF)

 $y - 5 = 3(x^2 - 12x + 5)$ (GF)

 $y - 5 = 3(x^2 - 12x + 5)$
 $y - 5 + 12 = 3(x^2 - 12x + 4)$
 $y + 7 = 3(x - 2)^2$
 $y + 7 = 3(x - 2)^2$ (TF)

15. Place the following functions in both standard and transformational form:

a)
$$y = x^2 + 12x + 40$$
 b) $y = -2x^2 + 8x - 10$
 $y - 40 = x^2 + 12x$ $y + 10 = -2x^2 + 8x$
 $y - 40 + 36 = (x^2 + 12x + 36) + 10 = -2(x^2 - 4x)$
 $y - 4 = (x + 6)^2 + 10 - 8 = -2(x^2 - 4x + 4)$
 $y - 4 = (x + 6)^2 + 4$ (SF) $y = -2(x - 2)^2$

(SF) $y = (x + 6)^2 + 4$ (SF) $y = -2(x - 2)^2$

(TF) $(y - 4) = (x + 6)^2$ (TF) $-1(y + 2) = (x - 2)^2$

a) $y = 3x^2 + 12x$ d) $y = -2x^2 + 14x - 1/2$
 $y = 3(x^2 + 4x)$ $y + 1/2 = -2(x^2 - 1/2)$
 $y + 1/2 = 3(x^2 + 4x + 4)$ $y + 1/2 = -2(x^2 - 1/2)$
 $y + 1/2 = 3(x + 2)^2$ $y + 1/2 - 98/4 = -2(x - 1/2)^2$

(SF) $y = 3(x + 2)^2 - 12$ $y + 2/4 - 98/4 = -2(x - 1/2)^2$

(SF) $y = 3(x + 2)^2 - 12$ $y + 2/4 - 98/4 = -2(x - 1/2)^2$

(SF) $y = -2(x - 1/2)^2$ $y + 2/4 - 98/4 = -2(x - 1/2)^2$

(SF) $y = -2(x - 1/2)^2$ $y = -2(x - 1/2)^2$

(SF) $y = -2(x - 1/2)^2$ Terms of the following functions in both standard and transformational form:

(SF) $y = -2(x - 1/2)^2$ $y = -2(x - 1/2)^2$ Terms of the following functions in both standard and transformational form:

(SF) $y = -2(x - 1/2)^2$ $y = -2(x - 1/2)^2$ Terms of the following functions in both standard and transformational form:

(SF) $y = -2(x - 1/2)^2$ $y = -2(x - 1/2)^2$ Terms of the following functions in both standard and transformation in the following functions in the following f

(a)
$$-\frac{1}{5}(y+\partial) = (x-1)^3$$
 (Transformational)

 $y = \frac{5}{5}(x-1)^3 - \frac{3}{2}$ (Standard)

 $a=5$ $h=1$ $K=-3$

Vertex: $(1,-3)$ Axis of Symmetry: $x=1$

Direction: Down Domain: $\{x \mid x \in R\}$

Stretch: $\frac{1}{5}$ Françe: $\{y \mid y \le -3, y \in R\}$

(b) $3(y-\partial) = (x-0)^3$ (Transformational)

 $y-\partial=\frac{1}{3}(x-0)^3+\partial$
 $y=\frac{1}{3}(x-0)^3+\partial$ (Standard)

 $y=\frac{1}{3}(x-0)^3+\partial$ (Standard)

 $a=\frac{1}{3}$ h=0 k=3

B
$$y = \lambda(x-1)^3 + 3$$
 (Standard)
 $y = \lambda(x-1)^3 + 3$
 $y = \lambda(x^3 - \lambda x + 1) + 3$
 $y = \lambda(x^3 - \lambda x + 1) + 3$
 $y = \lambda(x^3 - \lambda x + 1) + 3$
 $y = \lambda(x^3 - \lambda x + 1) + 3$
 $y = \lambda(x^3 - \lambda x + 1) + 3$
 $y = \lambda(x^3 - \lambda x + 1) + 3$
(Seneral)

