1. What is different about these two graphs?
a) Domain
b) Range
c) Axis of Symmetry
d) Stretch Factor

2. $\mathrm{y}=\mathrm{a}(\mathrm{x}-\mathrm{h})^{2}+\mathrm{k}$


Which graph has a change in " h " only?

3. $\mathrm{y}=\mathrm{a}(\mathrm{x}-\mathrm{h})^{2}+\mathrm{k}$

4. $\mathrm{y}=\mathrm{a}(\mathrm{x}-\mathrm{h})^{2}+\mathrm{k}$


Which graph has a change in " k " only?


Which graph has a change in "a" only?

*** Use the following equation for questions $(5-7): \frac{1}{2}(y-3)=(x+4)^{2}$
5. The " 3 " moves the graph:
a) up/down
b) left/right
c) and stretches it
d) and reflects it in the $x$-axis
6. The " 4 " moves the graph:
a) up/down
b) left/right
c) and stretches it
d) and reflects it in the $x$-axis
7. The " $1 / 2$ ":
a) moves the graph up/down
b) moves the graph sideways
c) stretches the graph
d) flips the graph
8. The parabola shown in the diagram has its $x$-intercepts at $(-3,0)$ and $(11,0)$. Which one of the following "could" be the vertex:
a) $(4,-5)$
b) $(14,-3)$
c) $(8,-2)$
d) $(7,4)$

Average of $x$-values:
$\frac{-3+11}{2}=\frac{8}{2}=(4, ?)$
SKETCH:
9. A ball is kicked and its graph is defined by $-\frac{1}{5}(y-20)=(x-6)^{2}$. What is the maximum height? How long does it take to reach the maximum height?

a) $20 \mathrm{~m} \quad 6 \mathrm{~s}$
b) $5 \mathrm{~m} \quad 6 \mathrm{~s}$
c) 20 m

5 s
(a) 20 m
10. Which of the following equations could be used to find the area, if you had 200 m of material to construct a fence around the following area?
a) $\mathrm{y}=(200-\mathrm{x})(\mathrm{x})$
b) $\mathrm{y}=(100-2 \mathrm{x})(\mathrm{x})$
c) $y=(200-2 x)(x)$
d) $y=(100-x)(2 x)$
$P=200 \mathrm{~m}$
$x$ Let $x=$ width $200-2 x=$ length $A=l \times W$
$x \square$
${ }^{* * *}$ A rocket is launched and its path is defined by $h=-4 \mathrm{t}^{2}+40$. Use this equation to answer $\left(10^{-2}-13\right)(x)$
11. What is the maximum height of the rocket?

$$
h=-4 t^{2}+40 t
$$

a) 40 m
b) 160 m
c) 10 m
d) $100 \mathrm{~m} \quad h=-4\left(t^{2}-10 t\right)$
12. How much time would it take the rocket to hit the ground $5 \times 2 \quad h-100=-4(t-5)^{2}$
a) 10 seconds
b) 5 seconds
c) 4 seconds
d) 20 seconds

$$
h=-4(t-5)^{2}+100
$$

13. How high would the rocket be after 3 seconds?
a) 40 m
b) 84 m
c) 156 m
d) 100 m

$$
\begin{gathered}
h=-4(3)^{2}+40(3) \\
h=-4(9)+120 \\
h=-36+120 \\
h=84 \mathrm{~m}
\end{gathered}
$$

Time to Max. reach Height Max.
14. If $y=3(x-2)^{2}+1$ was placed in general form, it would be:
a) $y=3 x^{2}-6 x+3$
b) $y=3 x^{2}-12 x+13$
c) $y=3 x^{2}-6 x+13$
d) $y=3 x^{2}-6 x+3$

$$
\begin{aligned}
& y=3(x-2)^{2}+1 \\
& y=3(x-2)(x-2)+1 \\
& y=(3 x-6)(x-2)+1 \\
& y=3 x^{2}-6 x-6 x+12 \\
& y=3 x^{2}-12 x+13
\end{aligned}
$$

15. $-\frac{1}{5}(y+2)=(x-1)^{2}$ (TH)

Vertex $(1,-2)$
Direction Downward


Axis of Symmetry $\quad \chi=1$

16. $3(y-2)=x^{2} \Rightarrow 3(y-2)=(x-0)^{2}(T F)$


Axis of Symmetry $\quad x=0$


Range $\{y \mid y \geq 2, y \in R\}$

