Solving Quadratic Equations ($ax^2 + bx + c = 0$) Method #1: Factoring Add Multipy Example 1: $x^2 + 6x + 8 = 0$ _____"Simple Trinomial" (x + 2)(x + 4) = 0Either x + 2 = 0 or x + 4 = 0x = -2 x = -4

The roots of this quadratic equation are -2 and -4.

*2 x-intercepts!

(a)
$$y = x^{2} + 7x$$

Find the roots: $(y=0)$ common tactor
 $0 = x^{2} + 7x$
 $0 = (x(x+7))$
 $X=0$ $(x+7)=0$
 $(0,0)$ $x=-7$
 $(-7,0)$

(3)
$$y = x^{2} - 7x + 10$$

Find the roots: $(y=0)$
 $0 = x^{2} - 7x + 10$
 $0 = (x - 3)(x - 4)$
 $x - 3 = 0$
 $x - 3 = 0$
 $x = 3$
 $x - 4 = 0$
 $x = 4$

.

Example 2:
$$7x^{2} + 4x = 0$$
 "Common Factor"
(x(7x + 4) = 0
Either x = 0 or 7x + 4 = 0
(0,0) $\frac{7x}{7} = \frac{-4}{7}$
 $x = \frac{-4}{7}$ (-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-5)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4

The roots of this quadratic equation are 0 and <u>-4</u>. 7 *2 x-intercepts! Example 3: $10x^2 = 100$ "Simple Solving" *Since there is only 1 variable we can solve for "x" very easily.

$$\frac{10x^{2}}{10} = \frac{100}{10}$$

$$\frac{10}{x^{2}} = \frac{100}{10}$$

$$\frac{x^{2}}{x} = \frac{10}{10}$$

$$\frac{x}{x} = \sqrt{10}$$

$$x = +\sqrt{10} \text{ and } -\sqrt{10}$$

The roots of this quadratic equation are $+\sqrt{10}$ and $-\sqrt{10}.$

*2 x-intercepts!

Example 4:
$$2x^{2} + x - 15 = 0$$
 "Decomposition"
 $(2x^{2} + 6x) - 5x - 15 = 0$
 $2x(x + 3) -5(x + 3) = 0$
 $(x + 3)(2x - 5) = 0$
Either x+3 = 0 or 2x-5 = 0
 $x + 3 = 0$ $2x - 5 = 0$
 $x = -3$ $2x = 5$
 2 2
 $x = 5$
 2

(a)
$$y = 3x^{3} + 7x - 6$$

Find the roots: $(y=0)$
 $0 = 3x^{3} + 7x - 6$
 $0 = (3x^{3} + 9x)(3x - 6)$
 $0 = (x+3)(3x-3)$
 $X + 3 = 0$
 $(x + 3) = 3(x + 3)$
 $0 = (x+3)(3x - 3)$
 $X + 3 = 0$
 $x = -3$
 $(-3,0)$
 $X = 2/3$
 $(-3,0)$
 $(-3/3,0)$

(m-9)(m+2)=0

$$m^{2}-7m=18$$

 $m^{2}-7m-18=0$
 $-9 \times 2=-18$
 $-9 + 2=7$