Questions From Homework
(3) (ii)

$$
y=x^{4}-8 x^{2}
$$

$$
\begin{aligned}
& y^{\prime}=4 x^{3}-16 x \quad y^{\prime \prime}=12 x^{2}-16 \\
& y^{\prime}=4 x\left(x^{2}-4\right) \quad y^{\prime \prime}=4^{*}\left(3 x^{2}-4\right) \\
& y^{\prime}=4 x(x-2)(x+2) \\
& \begin{aligned}
3 x^{2}-4 & =0 \\
3 x^{2} & =4
\end{aligned} \\
& C V: x=-2,0, \partial \\
& \begin{aligned}
3 x^{2} & =4 \\
x^{2} & =\frac{4}{3}
\end{aligned} \\
& x= \pm \frac{\partial}{\sqrt{3}} \\
& \text { CV: } x= \pm \frac{2}{\sqrt{3}} \doteq \pm 1.15
\end{aligned}
$$

a) Intervals of Inc lies.

Increasing on $(-\partial, 0)+(2, \infty)$
Decreasing on $(-\infty,-2) *(0,2)$

$$
\text { max } M \text { in }
$$

د) $f(-2)=-16 \quad(-2,-16)$ min $f(0)=0 \quad(0,0)$ max
$f(2)=-16 \quad(2,-16) \mathrm{min}$
c) Intervals of coreanty

CU on $\left(-\infty, \frac{2}{\sqrt{3}}\right) d\left(\frac{2}{\sqrt{3}}, \infty\right)$
Cos $\left(-\frac{2}{\sqrt{3}}, \frac{2}{\sqrt{3}}\right)$
d) Inflection Points.

$$
\begin{aligned}
& f\left(\frac{2}{\sqrt{3}}\right)=-\frac{80}{9} \quad\left(-\frac{2}{\sqrt{3}}, \frac{-80}{9}\right) \\
& f\left(\frac{2}{\sqrt{3}}\right)=-\frac{80}{9}\left(\frac{2}{\sqrt{3}},-\frac{80}{9}\right)
\end{aligned}
$$

Making a Complete Sketch

Examine the function $f(x)=x^{4}-4 x^{3}$ with respect to \ldots

- Intercepts $f(x)$
- symmetry $f(x)$
- Asymptotes $f(x)$
- Intervals of Increase or Decrease $f^{\prime}(x)$
- Local Maximum and Minimum values Plug CV into original.
- Concavity and Points of Inflection $f^{\prime \prime}(x) \rightarrow$ Plug CV into or anginal
-Intercepts:

$$
\begin{array}{lc}
x \text { int: }(y=0) & y \text { int: }(x=0) \\
f(x)=x^{4}-4 x^{3} & f(0)=(0)^{4}-4(0)^{3} \\
0=x^{3}(x-4) & =0 \\
x=0,4 & (0,0) \\
(0,0) \oplus(4,0) &
\end{array}
$$

Symmetry:

$$
\begin{aligned}
f(-x) & =(-x)^{4}-4(-x)^{3} \\
& =x^{4}+4 x^{3}
\end{aligned}
$$

No Symmetry
(3) Asymp totes. No Asymptotes
(4) Intervals of $I_{n c} / \operatorname{Dec}$:

$$
\begin{aligned}
& f(x)=x^{4}-4 x^{3} \\
& f^{\prime}(x)=4 x^{3}-12 x^{2} \\
& f^{\prime}(x)=4 x^{2}(x-3) \\
& \text { cv: } x=0,3
\end{aligned}
$$

Decreasing on $(-\infty, 3)$
Increasing on $(3, \infty)$
(5) Local \max / min :

$$
f(3)=(3)^{4}-4(3)^{3}=-27 \quad(3,-27) \mathrm{min}
$$

(0) Intervals of Concavity.

$$
\begin{aligned}
& f(x)=x^{4}-4 x^{3} \\
& f^{\prime}(x)=4 x^{3}-12 x^{2} \\
& f^{\prime \prime}(x)=12 x^{2}-24 x \\
& f^{\prime \prime}(x)=12 x(x-2) \\
& (v: x=0,2
\end{aligned}
$$

$$
C U \text { on }(-\infty, 0)+(2, \infty)
$$

$$
C D \text { on }(0,2)
$$

(1) Inflection Points:

$$
\begin{aligned}
& f(0)=(0)^{4}-4(0)^{3}=0 \quad(0,0) \\
& f(2)=(2)^{4}-4(2)^{3}=-16 \quad(2,-16)
\end{aligned}
$$

homework

Examine the function $f(x)=\frac{x^{2}}{1-x^{2}}$ with respect to...

- Intercepts
- Symmetry
- Asymptotes
- Intervals of Increase or Decrease
- Local Maximum and Minimum values
- Concavity and Points of Inflection
- Sketch the Curve

Examine the function $f(x)=3 x^{5}-5 x^{3}$ with respect to...

- Intercepts
- Symmetry
- Asymptotes
- Intervals of Increase or Decrease
- Local Maximum and Minimum values
- Concavity and Points of Inflection
- Sketch the Curve

Examine the function $f(x)=\frac{x^{2}}{x-7}$ with respect to...

- Intercepts
- Symmetry
- Asymptotes
- Intervals of Increase or Decrease
- Local Maximum and Minimum values
- Concavity and Points of Inflection
- Sketch the Curve

