Warm Up

Na3PD4

Calculate the mass of 0.905 moles of sodium phosphate.

$$Nb_3PO_4 \longrightarrow (3 \times 2299) + (1 \times 30.97) + (4 \times 16.00)$$

= $163.949/mol$

$$Mm = \frac{m}{n}$$
 $163.9491mol = \frac{m}{0.905mol}$
 $(163.9491mol)(0.905mol) = m$

CH3COH

Molar Mass Conversions

Once molar mass is established, a conversion can be made from grams to moles or moles to grams (depending on the measurement of the sample)

$$Mm = m \frac{mass (g)}{n}$$
of moles

Ex. How many moles are found in 90.5 g of H₂O?

Ex. What is the mass of 4.50 moles of NaNO₃?

Mole-Volume Relationship

22.4 L I mol Cl2 22.4 L Imol He

Avagadro's Hypothesis

Equal volumes of gases at the same temperature and pressure contain equal number of particles.

Standard temperature and pressure (STP)

0.°C and 101.3kPa

At STP, 1 mol (6.02×10^{23} representative particles) of any gas contains 22.4 L.

 $V_{\rm m}$ @ STP = 22.4 L/mol

Calculating Volume at STP

Ex. Determine the volume of oxygen gas will 0.375 mol occupy at STP.

Ex. Determine the number of moles of helium gas found in 21.8 L at STP.

Homework

p. 298-301 #16-21