METHOD \#3

We can use the method of completing the square to come up with a formula that can be used to solve ALL quadratic equations.

The solution to any quadratic equation: $a x^{2}+b x+c=0$; where $a \neq 0$, is given $b y$:

$$
\begin{aligned}
& \text { The Quadratic Formula: } \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

Example 1:
Solve $\quad \underline{=} x^{2}+3 x-4=0$
Solution:

$$
\mathrm{a}=1 ; \mathrm{b}=3 ; \mathrm{c}=-4
$$

Therefore, $x=\frac{-3 \pm \sqrt{(3)^{2}-4(1)(-4)}}{2(1)}$

$$
\begin{aligned}
& x=\frac{-3 \pm \sqrt{9+16}}{2} \\
& x=\frac{-3 \pm \sqrt{25}}{2} \\
& x=\frac{-3 \pm 5}{2} \\
& x=\frac{2}{2} \text { or } x=\frac{-8}{2} \\
& x=1 \text { or } x=-4
\end{aligned}
$$

Example 2:
Solve
Solution:

$$
\begin{aligned}
& 7 x^{2}-4=0 \\
& 7 x^{2}+0 x-4=0
\end{aligned}
$$

$$
a=7 ; b=0 ; c=-4
$$

Therefore, $x=\frac{0 \pm \sqrt{(0)^{2}-4(7)(-4)}}{2(7)}$

$$
\begin{aligned}
& x=\frac{ \pm \sqrt{0+112}}{14} \\
& x=\frac{ \pm \sqrt{112}}{14} \\
& x=\frac{ \pm \sqrt{112}}{14} \\
& x=\frac{ \pm \sqrt{16 \times 7}}{14} \\
& x=\frac{ \pm 4 \sqrt{7}}{14} \\
& x=\frac{ \pm 2 \sqrt{7}}{7}
\end{aligned}
$$

Solve by Factoring
$x^{2}+\frac{b^{+}}{3 x}-4=0$

$$
\begin{aligned}
& -1 \times 4=-4 \\
& -1+4=3
\end{aligned}
$$

$$
(x-1)(x+4)=0
$$

Since the solutions to quadratic equations are linked to the x -intercepts of quadratic functions, it makes sense that quadratic equations may also have 0,1 , or 2 solutions.

In the next few examples, we will use the quadratic formula to find the solution to various quadratic equations. These examples will illustrate the three possible results that can be obtained when solving quadratics.

Example 3: Two REAL Solutions
Solve

Solution:

$$
x^{2}+7 x+12=0
$$

$$
(x+3)(x+4)=0
$$

$\mathrm{a}=1 ; \mathrm{b}=7 ; \mathrm{c}=12$
Therefore, $x=\frac{-7 \pm \sqrt{(7)^{2}-4(1)(12)}}{2(1)}$
$x=\frac{-7 \pm \sqrt{49-48}}{2}$
$x=\frac{-7 \pm \sqrt{1}}{2}$
$x=\frac{-7 \pm 1}{2}$
$x=\frac{-6}{2}$ or $x=\frac{-8}{2}$
$x=-3$ or $x=-4$

Example 4: One REAL Solution

Solve

$$
2 x^{2}+24 x+72=0
$$

Solution:

$$
a=2 ; b=24 ; c=72
$$

$$
\text { Therefore, } x=\frac{-24 \pm \sqrt{(24)^{2}-4(2)(72)}}{2(2)}
$$

$$
x=\frac{-24 \pm \sqrt{576-576}}{4}
$$

$$
x=\frac{-24 \pm \sqrt{0}}{4}
$$

$$
x=\frac{-24^{ \pm} \pm 0}{4}
$$

$$
x=\frac{-24}{4}
$$

$$
x=-6
$$

Trinomial

 DecompositionSolve by factoring:

$$
\begin{aligned}
& \frac{12}{12} \times \frac{12}{12}=144 \\
& 120=24
\end{aligned}
$$

$$
2 x^{2}+24 x+72=0
$$

$$
\begin{aligned}
& \left(2 x^{2}+12 x\right)(12 x+72)=0 \\
& 2 x(x+6)+12(x+6)=0 \\
& (x+6)(2 x+12)=0
\end{aligned}
$$

$$
\begin{array}{r|c}
x+6=0 & 2 x+12=0 \\
x=-6 & 2 x=-12 \\
x=-6
\end{array}
$$

Example 5: No REAL Solutions.

Solve

$$
x^{2}-4 x+8=0
$$

Solution:

$$
a=1 ; b=-4 ; c=8
$$

Therefore, $x=\frac{-(-4) \pm \sqrt{(-4)^{2}-4(1)(8)}}{2(1)}$

$$
\begin{aligned}
& x=\frac{4 \pm \sqrt{16-32}}{2} \\
& x=\frac{4 \pm \sqrt{-16}}{2}
\end{aligned}
$$

We will come back to this ...

