Warm Up

Determine the mass of 0.414 mol of chlorine.

$$0.414 \text{ mot } Cl_2 \times 70.90 \text{ g } Cl_2 = 29.4 \text{ g } Cl_2$$

$$| \text{ protetz}|$$

$$Cl_2 \rightarrow (2 \times 35.45) = 70.90 \text{ g | mol}$$

How many moles are found in 5.98×10^{25} molecules of C_4H_{10} ?

19.0L x 1 mol 22.4 L

Molar calculations worksheet

- 1. 8.97 x 10⁻³ mol
- 2. 1.49 x 10²⁵ atoms
- 3. 1.30×10^{26} atoms
- 4. 46.01 g/mol
- 5. 14 300 mol
- 6. 342.34 g/mol
- 7. 159.70 g/mol

- 8. 4.24 x 10²⁴ molecules
 - 9. 1.79 x 10²⁵ atoms
 - 10.643 g
 - 11. 0.266 mol
 - 12. 10 900 g
 - 13. 6.26 mol

Check Homework Worksheet

$$= \sqrt{14300 \text{ (mol } \Omega_2)}$$

Percent Composition

The relative amounts of element in a compound are expressed as the percent composition (by mass) for each element within the compound.

Ex. K₂CrO₄

K - 40.3%

Cr - 26.8%

O - 32.9%

Percent Composition from Mass Data

When a 13.60 g sample containing only magnesium and oxygen is decomposed, 5.40 g of oxygen is obtained. What is the percent composition of this compound?

$$M_{gx}O_{x} \longrightarrow M_{g} + O_{2}$$
 $13.60g$
 $8.20g$
 $5.40g$
 $\% O = \frac{1000}{1000} \times 100\%$
 $\% M_{g} = \frac{8.20g}{13.60g} \times 100\%$
 $\% M_{g} = \frac{8.20g}{13.60g} \times 100\%$

Percent Composition from the Chemical Formula

Ex. Na₂CO₃

Homework

p. 306 #32, 33

p. 307 #34, 35