Math 11 Predicting the Number and Type of Roots of Quadratic Equations

We just stated that a quadratic equation can have 0,1 , or 2 solutions or roots. There is a simple way to predict the number and type of roots that an equation has. We use a quantity called the Discriminant, D. The discriminant is the quantity that is found under the square root sign in the quadratic formula:

$$
\mathrm{D}=\mathrm{b}^{2}-4 \mathrm{ac}
$$

For any quadratic equation written in General Form, $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ If the discriminant, $D=b^{2}-4 a c>0$, there will be two REAL roots. \square If the discriminant, $D=b^{2}-4 a c=0$, there will be one REAL root
 If the discriminant, $D=b^{2}-4 a c=0$, there will be one REAL root.
If the discriminant, $D=b^{2}-4 a c<0$, there will be two IMAGINARY roots. or OREAL cots.

Of course, we can extend this theory to the number of x-intercepts a quadratic function has. We can easily tell if a function has 0,1 , or $2 x$-intercepts by evaluating the discriminant of the function and applying the same rules as above.

Example $1 \Rightarrow D=b^{2}-4 a c$

Find the discriminant for each of the following quadratic equations. Then predict the type of roots.
$a)=2 x^{2}+3 x-2=0 \quad b=3 \quad c=-2$
Solution: $D=b^{2}-4 a c$
$\mathrm{D}=(3)^{2}-4(2)(-2)$
D $=9+16$
0,2 REAL Roots.

Since D $>0,2$ REAL Roots.

b) $-3 x^{2}-2 x-1=0$
Solution: $D=b^{2}-4 a c=-2 c=-1$
Solution: $\begin{aligned} \mathrm{D} & =\mathrm{b}^{2}-4 \mathrm{ac} \\ \mathrm{D} & =(-2)^{2}-4(-3)(-1)\end{aligned}$
c) $x^{2}+16 x+64=0$
$\begin{array}{ll}a=1 & b=16 \quad c=64 \\ \text { Solution: } & D=b^{2}-4 a c\end{array}$
$D=25$ positive
$\mathrm{D}=4-12$

$$
D=(16)^{2}-4(1)(64)
$$

$$
\mathrm{D}=256-256
$$

Example 2

Since $\mathrm{D}<0,2$ IMAGINARY Roots.
D $=0$

Find the number of x-intercepts, or zeros, that each of the corresponding quadratic functions from Example 1 will have.
a) $y=2 x^{2}+3 x-2$
2 x-intercepts

b) $y=-3 x^{2}-2 x-1$
no x-intercepts

c) $y=x^{2}+16 x+64$

1 x-intercept

Example 3

Find the value of c in the quadratic equation $x^{2}+4 x+c=0$, such that the equation has:
a) two real roots
b) one real root
$D>0$
$D=0$
c) noreal roots (two imaginary roots) $D<0$

Solution

a) For two real roots, the discriminant must be greater than 0 .

$$
b^{2}-4 a c>0
$$

$(4)^{2}-4(1)(c)>0$
$16-4 c>0$
$-4 c>-16 \not \approx$ Remember, dividing by a negative on both sides switches the inequality! $\mathbf{c}<4$ All values of c less than 4 results in two real solutions.
b) For one real root, the discriminant must equal 0 .

$$
b^{2}-4 a \circlearrowleft 0
$$

$(4)^{2}-4(1)(c)=0$
$16-4 c=0$
$-4 c=-16$
$\mathbf{c}=4 \quad$ The only value of c that will result in the equation having one real root is 4 .
c) For no real root, the discriminant must be less than 0 .

```
        \(b^{2}-4 a c ® 0\)
\((4)^{2}-4(1)(c)<0\)
    \(16-4 \mathrm{c}<0\)
            \(-4 c<-16 \quad\) Switch Inequality!
                    \(\mathbf{c}>4 \quad\) All values of \(c\) greater than 4 will result in the equation having two imaginary
                roots.
```


Assignment

$$
D=b^{2}-4 a c
$$

For each of the following quadratic equations, evaluate the discriminant, then predict what type of roots the equation will have. Do not solve the equation.
35. $2 x^{2}+3 x-10=0$
36. $9 x^{2}-12 x+4=0$
$a=2$
37. $3 x^{2}-7 x+5=0$
$b=3$
$D=(3)^{2}-4(2)(-10)$
$=9+80$
$c=-10$
$=89$

For each of the following quadratic functions, evaluate the discriminant, then predict how many x-intercepts the parabola will have.
38. $y=x^{2}+8 x+16$
39. $\mathrm{y}=5 \mathrm{x}^{2}+2 \mathrm{x}+1$
40. $\mathrm{y}=7 \mathrm{x}^{2}+6 \mathrm{x}$
41. $y=x^{2}-13 x+42$
42. For what value of c will the equation $3 \mathbf{x}^{2}+\mathbf{x}+c=0$ have:
a) two real roots
b) one real root
c) two imaginary roots

