Ex. What volume of solution is required to dissolve 1.75 mol to make a 0.95 mol/L solution of CaCO₃?

$$V = ?$$
 $(n = 1.75 \text{ mol})$
 (1.75 mol)
 $(2.95 \text{ mol})/(2.15 \text{ mol})$
 (3.03)
 $(3.095 \text{ mol})/(2.18 \text{ mol})/(2.18 \text{ mol})$
 $(3.15 \text{ mol})/(2.18 \text{ mol})/(2.1$

Ex. A sample of laboratory ammonia solution has a concentration of 14.8 mol/L. What mass of ammonia is present in a 25.0 mL sample of this solution?

$$\begin{array}{c} \text{NH}_{3} \\ \text{C=14.8 mol/L} \\ \text{m=?} \\ \text{V=25.0 mL} \\ = 0.0250L \\ \text{n=(4.8 mol/L)(0.0250L)} \\ \text{n=0.370 mol} \end{array}$$

$$9 = 18$$
 $18(1)$
 $1 = 18(1)$
 $1 = 18 = 2$

$$C = N (mol)$$

$$(mol/L)$$

(aClz

$$n=?$$

 $V = 250.mL$
 $C = 2.0M(20mg/L)$
 $m=?$
 $(2.0mg/L)(0.250L)$
 $n = (2.0mg/L)(0.250L)$

Concentration Ratios

Percent by Volume

$$\%$$
(v/v) = volume of solute x 100%
volume of solution

Ex. 5% acetic acid

 \Rightarrow <u>5 mL of acid</u> 100mL of solution

Mass - Mass Ratio (% (m/m))

$$\%$$
(m/m) = mass of solute x 100%
mass of solution

Ex. 6% m/m of hydrogen peroxide

$$\Rightarrow \frac{6 \text{ g of H}_2 \text{O}_2}{100 \text{ g of solution}}$$

Sample Problems

What is the percent by volume of ethanol in the final solution when 85mL of ethanol is diluted to a total volume of 250 mL with water?

$$\%(V/V) = ?$$
 $\%(V/V) = \frac{V \text{solute}}{V \text{sol}} \times 100\%$
 $V \text{solute} = 85\text{mL}$
 $V \text{sol} = 250\text{mL}$
 $V \text{sol} = 250\text{mL}$
 $V \text{sol} = 34\%$

What mass of KNO₃ would be needed to prepare 1250 g of a 15.0% (m/m) KNO₃ solution?

%(m/m) =
$$\frac{m_{\text{solute}}}{m_{\text{sol}}} \times 100\%$$

 $m_{\text{solute}} = 7$
 $m_{\text{sol}} = 12509$
 $m_{\text{solute}} = 12509$
 $m_{\text{solute}} = 12509$
 $m_{\text{solute}} = 1889$
 $m_{\text{solute}} = 1889$

Practice Problems

p. 481 #8,9

p. 483 #10,11

p. 485 #14,15

p. 486 #22,23