

A radian is the angle subtended by an arc of length r (radius)

$$\theta = \frac{a}{r} \qquad \text{arc length}$$

$$360^\circ = \frac{2\pi r}{r}$$

Degrees Radians

$$360^{\circ} = 2\pi$$

$$1^{\circ} = \frac{\pi}{180} \text{ radians}$$

$$1 \text{ rad} = \frac{180}{\pi}$$

$$2 \text{ radians}$$

$$3 \text{ radians}$$

$$2 \text{ radians}$$

$$3 \text{ radians}$$

$$2 \text{ radians}$$

$$2 \text{ radians}$$

$$3 \text{ radians}$$

$$2 \text{ radians}$$

$$2 \text{ radians}$$

$$3 \text{ radians}$$

$$2 \text{$$

Polar Coordinates

(Alternative form of graphing)

Consider a series of concentric circles having a common center, O, called the *pole*. The *polar axis* is the horizontal ray drawn from the pole in a positive direction (to the right).

Any point "P" plotted on the graph is described by a directed distance r and by the angle that OP makes with the polar axis (we use θ to represent the

angle). (r, 0)Let's look at the point P(4, 135)

Are there any other ways to represent the position of point *P*?

Plot the following points:

- (2, 240[°])
- **6** (4, -210)
- o (5, 450°)
- (-3, 150°)

Converting Rectangular Coordinates to Polar Coordinates

$$(x, y) \longrightarrow (r, \theta)$$
 or (a, b)

or (a, b)
To do so we must relate the polar coordinate system to the cartesian system by letting the polar axis coincide with the x axis so that the pole is at the origin.

- **©** Find the radius r, using the Pythagorean relationship $r = \sqrt{x^2 + y^2}$
- Find the related angle, α , using $\alpha = \tan^{-1} \left(\frac{|y|}{|x|} \right)$
- Find the angle, θ , by determining the quadrant in which the terminal arm is located and using the related angle.

 Θ The polar coordinates are (r, θ)

Let's try an example

Convert **P(-4, 2)** to Polar form

$$(x,y) \longrightarrow (r,\Theta)$$

$$\alpha = \tan^{-1}\left(\frac{|y|}{|x|}\right)$$

$$\alpha = \tan^{2}\left(\frac{3}{4}\right)$$

Converting Polar Coordinates to Rectangular Coordinates

$$(r, \theta) \longrightarrow (x, y)$$

Recall:

Therefore:

$$\cos\theta = \frac{x}{r}$$

$$x = r \cos \theta$$

$$\sin\theta = \frac{y}{r}$$

$$y = r \sin \theta$$

OFind *x*

- **6** Find y
- \mathfrak{I} The *Rectangular Coordinates* are (x, y)

Example
(1,0) (2,4)
Convert C(4, 150) to Rectangular form

$$r = 4$$

$$\theta = 150^{\circ}$$

Homework

