Arrhenius Theory

Revised Arrhenius Theory

Bases—OH-(NH3)

Bronsted-Lowry Theory

Conjugate Acid-Base Pairs

$$CH_3COOH_{(aq)} + H_2O_{(l)}$$
 $CH_3COO^{-}_{(aq)} + H_3O^{+}_{(aq)}$

Acid-Base reactions are at equilibrium!

(Look at forward reaction and reverse reaction)

- Every acid-base reaction at equilibrium has two acids and two bases.
- Acid on 'product' side is formed by addition of proton to base on 'reactant' side
- Base on 'product' side is formed by removal of a proton from acid on 'reactant' side

Conjugate acid-base pair

A pair of substances that differ by only a proton

Ex. H20(e)/H30(eq) CH3COOH(eq)/CH3COO(eq)

See Appendix F, p. 611

Predict the products for the following reaction, and identify each reactant as an acid or a base.

Worksheet