Homework - Worksheet

Water Equilibrium

Conductivity is due to the presence of ions. For water:

$$H_2O_{(l)} <==> H^+_{(aq)} + OH^-_{(aq)}$$

- therefore $K = [\underline{H}^+] [\underline{OH}^-]$ is very small $[\underline{H}_2O]$
- slight conductivity shows that equilibrium greatly favors water molecules (less than 2 H⁺ per billion water)
- therefore the concentration of water in pure water and in dilute aqueous solutions is essentially constant and can be combined with the equilibrium constant to produce a new constant called the *Ion Product Constant*

<u>Ionization Constant for water</u> (ion product constant)

$$K_w = [H^+] [OH^-] = 1.0 \times 10^{-14}$$
 at SATP

Since $[H^+]$ and $[OH^-]$ are found in 1:1 ratio $(H_2O_{(l)} <==> H^+_{(aq)} + OH^-_{(aq)})$

 $[H^{+}_{(aq)}] = [OH^{-}_{(aq)}] = 1.0 \text{ x } 10^{-7} \text{ mol/L in } \mathbf{neutral} \text{ solutions.}$

<u>Arrhenius's Theory</u> - acid is a substance that ionizes water produce H⁺ ions.

- additional ions produced by the acid increases the H⁺ concentration in the water. (more acid, more H⁺)

Therefore acids always have a $[H^+] > 10^{-7}$ mol/L

Basic solutions produce a [OH-] greater than 10-7 mol/L

K_w can be used to calculate either [H⁺] or [OH⁻]

since
$$\mathbf{K_w} = [\mathbf{H}^+] [\mathbf{OH}^-]$$
 then $[\mathbf{H}^+] = \mathbf{K_w} / [\mathbf{OH}^-]$

and
$$[OH^{-}] = K_{w}/[H^{+}]$$

pH and pOH

$$pH + pOH = 14.00$$

$$pH = -log[H^{+}_{(aq)}] \qquad pOH = -log[OH^{-}_{(aq)}]$$

$$[H^{+}_{(aq)}] = 10^{-pH} \qquad [OH^{-}_{(aq)}] = 10^{-pOH}$$

Ex. Calculate the pH of a solution where $[H^{+}_{(aq)}] = 3.24 \times 10^{-4} M$.

Ex. Calculate the concentration of hydroxide ions in a solution with a pOH of 10.14.

$$[OH_{eq}] = IO^{-pOH}$$
 $[OH_{eq}] = IO^{-10.14}$
 $[OH_{eq}] = IO^{-10.14}$
 $[OH_{eq}] = 7.2 \times IO^{-11}M$

Strong Acids

Calculate the concentration of the hydroxide ions, pH and pOH of a 0.15 mol/L solution of hydrochloric acid at 25°C.

Strong acids will always completely ionize

