Questions from Homework

Ex: 4,5

Ex: 4.6

(4) A:
$$\log_3 20 - \log_3 8$$
B: $\log_{10} 500 + \log_{10} 20$
 $\log_3 9$
 $\log_3 9$
 $\log_3 1000$

(8) c)
$$\log_3(x+y) + \log_3(x-y) - (\log_3 x + \log_3 y)$$

$$\log_3(x+y) + \log_3(x-y) - \log_3 xy$$

$$\log_3(x+y)(x-y) - \log_3 xy$$

$$\log_3(x+y)(x-y)$$

$$\log_3(\frac{x+y}{xy})$$

$$\log_3(\frac{x^3-y^3}{xy})$$

Logarithms

exponential form

ans $x = b^y$ exp.

Say "the base b to the exponent y is x."

logarithmic form

Say "y is the exponent

Say "y is the exponent to which you raise base b to get the answer x."

$$x = b^y \longleftrightarrow y = \log_b x$$

Logarithm of a Product

$$\log_b M + \log_b N = \log_b (MN)$$

Logarithm of a Quotient

$$\log_b M - \log_b N = \log_b \left(\frac{M}{N}\right)$$

Law of Logarithms for Powers

$$\log_b(N^p) = p \log_b(N) \qquad N \in R, b > 0, b \neq 1$$

Since *p* can be expressed as a whole number or a fraction, this law can be expressed as follows.

Law of Logarithms for Roots

$$\log_b(N^{\frac{p}{q}}) = \frac{p}{q}\log_b(N) \qquad N \in R, b > 0, b \neq 1$$

When you work with equations involving logarithms you need to use the laws of logarithms, which are summarized below:

$$\log_b M + \log_b N = \log_b (MN) \text{ Product}$$

$$\log_b M - \log_b N = \log_b \left(\frac{M}{N}\right) \text{ Quotient}$$

$$\log_b (N^p) = p \log_b (N)$$

$$\log_b (N^{\frac{p}{q}}) = \frac{p}{q} \log_b (N)$$
 Power

Example 1

a)
$$\log_{10} \sqrt[4]{1000}$$
 $\log_{10} (1000)^{4}$
 $\log_{10} (1000)$
 $\log_{10} (1000)$
 $\log_{10} (1000)$
 $\log_{10} (1000)$

b)
$$\log_2 32^{\frac{1}{3}}$$
 $\frac{1}{3}\log_3 32$
 $\frac{1}{3}(5)$
 $\frac{5}{3}$

Example 2 Combining Laws

Express each of the following as a single logarithm.

a)
$$3\log_3 2 + \log_3 4$$

 $\log_3 3 + \log_3 4$
 $\log_3 8 + \log_3 4$
 $\log_3 30$

b)
$$2\log_2 9 + \log_2 6 - 3\log_2 3$$

 $\log_3 9^3 + \log_3 6 - \log_3 3^3$
 $\log_3 81 + \log_3 6 - \log_3 37$
 $\log_3 \left(\frac{81.6}{37}\right)$

Example 3

Solve the following and remember to verify your solution

$$\log_3 x - \log_3 4 = \log_3 12$$

$$\log_3 x = \log_3 12 + \log_3 4$$

$$\log_3 x = \log_3 48$$

$$x = 48$$

Example 4

If $\log_a x = m$ and $\log_a y = n$ then express the following in terms of m and n.

$$\log_a \left(\frac{ax}{y}\right)^2$$

$$\partial \log_a \left(\frac{ax}{y}\right)$$

$$\partial \left[\log_a a + \log_a x - \log_a y\right]$$

$$\partial \left[1 + m - n\right]$$
or $\partial + \partial m - \partial n$

Homework