SOLUTIONS => Chapter 5 - Chapter Test

MULTIPLE CHOICE

- 1. Suppose you graph the linear inequality 2x + y < 4. Which set of statements describes the graph of the linear inequality?</p>
 - A. The boundary line is a solid line. The plane is shaded above the line.
 - B. The boundary line is a dashed line. The plane is shaded above the line.
- C. The boundary line is a dashed line. The plane is shaded below the line.
- D. The boundary line is a solid line. The plane is shaded below the line.

Equation of boundary: 2x+y=4

2 points located on the boundary: x-int: y-int: 3x+0=4 a(0)+y=43x=4 y=4

x = 3

Test Point; (0,0) L.S. R.S. 2x+y 4 2(0)+0

0<4, therefore (0,0) is located in solution region.

2. Which linear inequality is shown in the graph?

A.
$$\{(x, y) \mid y - x \ge -2, x \in \mathbb{W}, y \in \mathbb{W}\}$$
 C. $\{(x, y) \mid y - x \ge -2, x \in \mathbb{R}, y \in \mathbb{R}\}$

C.
$$\{(x, y) \mid y - x \ge -2, x \in \mathbb{R}, y \in \mathbb{R}\}$$

Test Point; (0,0)

D.
$$\{(x, y) \mid y - x > -2, x \in I, y \in I \}$$

3. Which is a solution to the system of linear inequalities?

$$\{(x, y) \mid 2x + y > 5, x \in I, y \in I\}$$

$$\{(x, y) \mid y - x < 4, x \in I, y \in I\}$$

For	(3,1):	For (4.5,0):					
L.S.	R.S. L.S	R.S	L.S.	R.S	L.S.	R.S.	
2x+y	5 y-x	4	2×+4	5	V-X	4	
2(3)+1	3-1		2(4.5)+0		0-4.5		
6+1	2		9+0		-4.5		
7	/	,	9	v		1	

For (-2,1):							
L.S.	R.S	L.S	R.S.	L.S.	-3,-1): R.S	L.S	R.S.
2x+y	5	y-x	4	2x+4	5	V-X	4
2(-2)+1		12		2(-3)-1		-13	
-4+1		3		-6-1	9	2	
-3	×		1	-7	v		
			~		^		1

4. Consider this system:

$$\{(x, y) \mid 3y + x \ge 3, x \in \mathbb{R}, y \in \mathbb{R}\}$$

$$\{(x, y) \mid x - y < 4, x \in \mathbb{R}, y \in \mathbb{R}\}\$$

The boundaries for the two inequalities intersect at the point (3.75, -0.25). Which statement about this point is most accurate?

- A. The point is not in the solution set, because its coordinates are not whole numbers.
- B. The point is in the solution set, because it lies on both boundaries.
- C. The point is not in the solution set, because one of the inequality signs is < or >.
- **D.** The point is in the solution set, because one of the inequality signs is \leq or \geq .

5. A sports equipment manufacturer produces snowboards and skis. It takes 4 h to cut and mould each board and 1 h to put on the finishes. It takes 4 h to cut and mould and 2 h to put on the finishes for a pair of skis. The total number of snowboards and pairs of skis produced per day is at most 15.

Let *a* represent the number of snowboards and *b* represent the number of pairs of skis made in one day or less. What are the restrictions on *a* and *b*?

A. no restrictions

B. $a \in \mathbb{N}, b \in \mathbb{N}$

C. $a \in I, b \in I$

- 6. Which algebraic model represents the situation in question 5?
 - A. $\{(a, b) \mid a \ge 0, b \ge 0, a + b \le 15, a \in \mathbb{R}, b \in \mathbb{R}\}$
 - $\{(a, b) \mid a \ge 0, b \ge 0, 5a + 6b \le 24, a \in \mathbb{R}, b \in \mathbb{R}\}\$
 - **B.** $\{(a, b) \mid a \ge 0, b \ge 0, a + b \le 15, a \in I, b \in I\}$
 - $\{(a, b) \mid a \ge 0, b \ge 0, 5a + 6b \le 24, a \in I, b \in I\}$
 - $(a, b) \mid a \ge 0, b \ge 0, a + b \le 15, a \in \mathbb{W}, b \in \mathbb{W}$
 - $\{(a, b) \mid a \ge 0, b \ge 0, 5a + 6b \le 24, a \in \mathbb{W}, b \in \mathbb{W}\}\$
 - D. $\{(a, b) \mid a \ge 0, b \ge 0, a + b \le 4, a \in \mathbb{N}, b \in \mathbb{N}\}\$
 - $\{(a, b) \mid a \ge 0, b \ge 0, 5a + 6b \le 24, a \in \mathbb{N}, b \in \mathbb{N}\}\$

```
8. Consider this system of linear inequalities:
```

$$y + 3x \ge 9$$

$$y < 2x - 3$$

- a) Determine the point of intersection for the system of linear inequalities. Point of intersection: (2.4)1.8)
- b) Will the point be a solid dot or an open dot on a graph of the system?

A(n) open dot

Equations of the boundaries:

$$\Rightarrow y = 2x - 3$$

2 points located on each boundary (x-int&y-int): $\Rightarrow y+3x=9$ x-int: y-int: x-int: y-int: y-i

$$\frac{1}{\sqrt{2}}x = \frac{1}{\sqrt{2}}$$

$$0 = 2x - 3$$

$$\frac{3}{2} = \frac{2}{2} \times$$

$$\frac{3}{2} = x$$

GRAPH (to determine point of intersection):

* Shaded region is not shown.

Point of Intersection located at approx. (2.4, 1.8)

10. The graph of a system of linear inequalities is shown, where the objective function is P = 1.5x + 4y.

$$(0.5, 2.5), (4, -1), (4, 6)$$

- b) What is the minimum solution for the system?
- c) If P represents the amount of profit, in thousands of dollars, what is the minimum profit that can be made? \$ 2000
- d) What is the maximum solution for the system? (4,6)
- e) If P represents the amount of profit, in thousands of dollars, what is the maximum profit that can be made? \$ 30 000

P= 10.75

For
$$(4,-1)$$
: $P = 1.5(4) + 4(-1)$
 $P = 6 - 4$
 $P = 2$

For
$$(4,6)$$
: $P=1.5(4)+4(6)$
 $P=6+24$
 $P=30$

- 13. Jenna and Rhiana sell tacos and burritos from a food cart.
 - · No more than 50 tacos and 75 burritos can be made each day.
 - · Jenna and Rhiana can make no more than 125 items, in total, each day.
 - It costs \$0.75 to make a taco and \$1.25 to make a burrito.

Create an optimization model and use it to determine the maximum and minimum costs to produce the food items.

Let t represent the number of tacos that can be made in a day.

Let b represent the number of burritos that can be made in a day.

Let C represent the cost of making the goods.

Restrictions: LEW, DEW

Constraints: t≥0, b≥0, t≤50, b≤75, t+b≤125.

Objective Function: C= 0.75t+1.25b

Vertices of feasible region:
(0,0), (0,75), (50,75)
and (50,0)