Questions from Homework

$$
\begin{aligned}
& \text { m) } y=\left(1+\cos ^{2} x\right)^{6}=\left(1+(\cos x)^{2}\right)^{6} \\
& y^{\prime}=6\left(1+\left(\cos ^{2} x\right)^{2}\right)^{5} \cdot 2(\cos x)(-\sin x) \\
& y^{\prime}=6\left(1+\cos ^{2} x\right)^{5}(-2 \sin x \cos x) \\
& y^{\prime}=-6\left(1+\cos ^{2} x\right)^{5}(2 \sin x \cos x) \text { Double Ang Ientity } \\
& y^{\prime}=-6\left(1+\cos ^{2} x\right)^{5}(\sin 2 x) \\
& y^{\prime}=-6 \sin 2 x\left(1+\cos ^{2} x\right)^{5}
\end{aligned}
$$

$$
\text { b } y=\frac{\sin x}{1+\cos x}
$$

$$
y^{\prime}=\frac{(1+\cos x)(\cos x)(1)-\sin x(-\sin x)(1)}{(1+\cos x)^{2}}
$$

$$
y^{\prime}=\frac{\cos x+\cos ^{2} x+\sin ^{2} x}{(1+\cos x)^{2}} \text { Pythagorear Ifty }
$$

$$
y^{\prime}=\frac{1+\cos x}{(1+\cos x)^{2}}=\frac{1}{1+\cos x}
$$

$$
\begin{aligned}
& \text { g) } y=\sin ^{-2}\left(x^{3}\right)=\left(\sin \left(x^{3}\right)\right)^{-2} \\
& y^{\prime}=-2\left(\sin \left(x^{3}\right)\right)^{-3} \cdot \cos \left(x^{3}\right) \cdot 3 x^{2} \\
& y^{\prime}=\frac{-6 x^{2} \cos \left(x^{3}\right)}{\left(\sin \left(x^{3}\right)\right)^{3}}=-\frac{-6 x^{2} \cos \left(x^{3}\right)}{\sin ^{3}\left(x^{3}\right)}
\end{aligned}
$$

p) $y=\cos ^{3}(\sin x)=[\cos (\sin x)]^{3}$

$$
\begin{aligned}
& y^{\prime}=3[\cos (\sin x)]^{2} \cdot(-\sin (\sin x)) \cdot(\cos x) \\
& y^{\prime}=-3[\cos (\sin x)]^{2} \sin (\sin x) \cos x \\
& y^{\prime}=-3 \cos ^{2}(\sin x) \sin (\sin x) \cos x
\end{aligned}
$$

The Sine Function

- We recall that the derivative $f^{\prime}(x)$ of a function $f(x)$ gives the slope of the tangent.
- On the next slide we graph $f(x)=\sin x$ together with $f^{\prime}(x)$, as determined by the slope of the tangent to the sine curve.
- Note that x is measured in radians.
- The derivative graph resembles the graph of the cosine!

Let's check this using the definition of a derivative...

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin x}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin x \cos h+\cos x \sin h-\sin x}{h} \\
& =\lim _{h \rightarrow 0}\left[\frac{\sin x \cos h-\sin x}{h}+\frac{\cos x \sin h}{h}\right] \\
& =\lim _{h \rightarrow 0}\left[\frac{\sin x \cos h-\sin x}{h}+\frac{\cos x \sin h}{h}\right] \\
& =\lim _{h \rightarrow 0}\left[\sin x\left(\frac{\cos h-1}{h}\right)+\cos x\left(\frac{\sin h}{h}\right)\right] \\
& =\lim _{h \rightarrow 0} \sin x \cdot \lim _{h \rightarrow 0} \frac{\cos h-1}{h}+\lim _{h \rightarrow 0} \cos x \cdot \lim _{h \rightarrow 0} \frac{\sin h}{h}
\end{aligned}
$$

Our calculations have brought us to four limits, two of which are easy:

- Since x is constant while $h \rightarrow 0$,

$$
\lim _{k \rightarrow 0} \sin x=\sin x \text { and } \lim _{k \rightarrow 0} \cos x=\cos x
$$

- With some work we can also show that

$$
\lim _{h \rightarrow 0} \frac{\sin h}{h}=1 \text { and } \lim _{h \rightarrow 0} \frac{\cos h-1}{h}=0
$$

- Thus our guess is confirmed:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \sin x \cdot \lim _{h \rightarrow 0} \frac{\cos h-1}{h}+\lim _{h \rightarrow 0} \cos x \cdot \lim _{h \rightarrow 0} \frac{\sin h}{h} \\
& =(\sin x) \cdot 0+(\cos x) \cdot 1=\cos x
\end{aligned}
$$

Rules to dififerentiate trigonometric functions:

Given that "u" represents some differentiable function...

$$
\begin{array}{ll}
\frac{d}{d u}(\sin u)=\cos u \bullet d u & \frac{d}{d u}(\csc u)=-\csc u \cot u \bullet d u \\
\frac{d}{d u}(\cos u)=-\sin u \bullet d u & \frac{d}{d u}(\sec u)=\sec u \tan u \bullet d u \\
\frac{d}{d u}(\tan u)=\sec ^{2} u \bullet d u & \frac{d}{d u}(\cot u)=-\csc ^{2} u \bullet d u
\end{array}
$$

Let's Practice...
Differentiate the following:

$$
\begin{aligned}
f(x) & =\frac{1}{1+\tan x} \\
f^{\prime}(x) & =\frac{(1+\tan x)(0)-1\left(\sec ^{2} x\right)(1)}{(1+\tan x)^{2}} \\
& =\frac{-\sec ^{2} x}{(1+\tan x)^{2}} \\
f(x) & =\frac{1}{1+\tan x}=(1+\tan x)^{-1} \\
f(x) & =-(1+\tan x)^{-2} \cdot\left(\sec ^{2} x\right)(1) \\
& =\frac{-\sec ^{2} x}{(1+\tan x)^{2}}
\end{aligned}
$$

Ex \#2.
Differentiate:

$$
\begin{aligned}
f(x) & =2 \csc ^{3}\left(3 x^{2}\right)=2\left(\csc \left(3 x^{2}\right)\right)^{3} \\
f^{\prime}(x) & =6\left(\csc \left(3 x^{2}\right)\right)^{2} \cdot-\csc \left(3 x^{2}\right) \cot \left(3 x^{2}\right) \cdot 6 x \\
& =-36 x \csc ^{2}\left(3 x^{2}\right) \csc \left(3 x^{2}\right) \cot \left(3 x^{2}\right) \\
& =-36 x \csc ^{3}\left(3 x^{2}\right) \cot \left(3 x^{2}\right)
\end{aligned}
$$

Homework

Worksheet on derivatives of trigonometric functions

Derivatives Worksheet.doc

