Warm Up

Solve the following system of equations and identify the type of system... Inconsistant

$$3x + 2y + z = 3$$

 $x - 3y + z = 4$
 $-6x - 4y - 2z = 1$
 $6x + 4y + 3z = 6$
 $6x - 4y - 3z = 1$
 $6x - 4y - 2z = 1$

Questions from homework

1 Determinant Method

$$\bigcirc 9$$
 $\begin{bmatrix} 6 & -3 \\ -3 & 5 \end{bmatrix}$

@ Unit Matrix Method

Solving Equations Using Matrices

or 3X3

<u>Matrix Elimination</u> involves taking the coefficients from a 2X2 system, placing them in a matrix, and working to make a new matrix by multiplying, dividing, and combining rows.

The combination of the coefficients from a system of equations and their solutions in an equivalent form is called an **augmented matrix**.

Ex.
$$2x + y + 3z = 0$$

 $x + y - 2z = -1$
 $x - 2y - z = 3$

$$\begin{pmatrix} 2 & 1 & 3 & 0 \\ 1 & 1 & -2 & -1 \\ 1 & -2 & -1 & 3 \end{pmatrix} \xrightarrow{3 \text{ 3}}$$

$$\begin{array}{c} x+3y=4\\ 3x+4y=2 \end{array} \longrightarrow \begin{pmatrix} 1 & 3 & 4\\ 3 & 4 & 2 \end{pmatrix} \quad \frac{3}{2}$$

Row Reduced Echelon Form

The goal in solving a system of equation using matrices is to obtain a new matrix - row reduced echelon form of a matrix. It takes the form:

$$\begin{pmatrix} 1 & 0 & x \\ 0 & 1 & y \end{pmatrix} \qquad \mathbf{Or} \qquad \begin{pmatrix} 1 & \# & \# & x \\ 0 & 1 & \# & y \\ 0 & 0 & 1 & z \end{pmatrix}$$

To reduce a matrix to its row echelon form, we can:

- a) Multiply or divide a row by a constant.
- b) Add or subtract one row from another.
- c) Interchange rows.

Solve the following system of equations using an augmented matrix reduced to its row echelon form...

Try this one on your own...

$$3x + 2y = 12$$

$$2x + 3y = 13$$

- 1. Express system in the form of an augmented matrix
- 2. Eliminate x in equation 2 and 3.
- 3 Eliminate "y" in equation 3 (must add/subtract 2 and 3)
- **4**/Create triangle of zeroes and solve.

Ex.
$$2x + y - z = -1$$

 $3x - y + 2z = 8$
 $2x + 2y - 3z = -6$

$$\begin{bmatrix}
3 & 1 & -1 & | & -1 & & -1 & | & -1 & & -1 & | & -1$$

Homework