UNIT 2 QUADRATICS 3 10 5 4 20

Many real-life situations involve non-linear relationships and functions. Businesses use quadratic functions to describe the parabolic path of projectiles.

In this chapter, you will look at ways to solve problems involving non-linear, and in particular, quadratic functions and relationships.

Definitions:

- Sequence An ordered arrangement of numbers, symbols, or pictures in which each item or term follows another according to a rule.

 1, 4, 7, 10, 13, ...
- Term Each item in a sequence. The symbol t₁ represents the first term in a sequence, t₂ represents the second term and so on.

$$t_1 = 1$$

$$t_4 = 10$$

Infinite Sequence \implies A sequence that continues indefinitely and can be written as $\{t_1, t_2, t_3, ...\}$

Finite Sequence \longrightarrow A sequence that eventually terminates (ends) and can be written as $\{t_1, t_2, t_3, ..., t_n\}$, where t_n represents the last or n^{th} term.

Differences

Sequence of A sequence created from another sequence by subtracting the value of each term in the original sequence from the next term in that sequence.

For Example: the sequence of differences for

(common difference) D, is a constant

Arithmetic Sequence _ A sequence created by adding any real number to each successive term.

Remember: Adding a negative integer is equivalent to subtracting a positive number.

$$t_n = t_1 + (n - 1)d$$

t₁ = first term d = common difference

$$d = t_3 - t_1 = t_3 - t_3 = t_4 - t_3 = t_5 - t_4$$
 $n = \# \text{ of terms}$

$$t_n = t_1 + (n-1)d$$

$$d = 1 - (-1)$$

$$t_n = -1 + (n-1) =$$

B Find the indicated term

$$0 \leftarrow 3,0,3,6,9,...$$

$$t_1 = -3$$
 $t_n = t_n + (n-1)d$

$$t_{18} = -3 + 17(3)$$

C,

① ①, 4,7,10,...,178

$$t_1 = 1$$
 $t_2 = t_1 + (n-1)d$
 $d = 3$
 $t_3 = 1 + (n-1)3$
 $t_4 = 178$
 $t_5 = 178 = 178 = 3n-3$
 $t_6 = 3n$
 $t_7 = 3n$
 $t_8 = 3n$
 $t_8 = 3n$

178 is the 60th term.