ADDING

CONSTANTS

SUBTRACTING

DIVIDING

COEFFICIENTS

MULTIPLYING

For the following polynomial $12x^5 - 5x^3 + 3xy^9 + 3 - 2y^4$

Variable(s):	
Coefficient(s): _	
Constant(s):	
Degree:	
# of terms:	

For the following polynomial $12x^5 - 5x^3 + 3xy^9 + 3 - 2y^4$

The perimeter of each polygon is given.

- a) Determine each unknown length.
- b) If w = 2, what is the perimeter?

The perimeter of each polygon is given.

6w + 14

a) Determine each unknown length.

$$(6w + 14) - (2w + 3) - (2w + 3)$$

$$= 6w + 14 - 2w - 3 - 2w - 3$$

$$= 2w + 8$$

$$= 2w + 8$$

$$= 2w + 8$$

b) If w = 2, what is the perimeter?

$$w + 4$$

= 2 + 4
= 6

The area of a rectangular drive is $9d^2 + 3d$ square metres. The driveway is 3d metres long.

- a) Determine a polynomial that represents the width of the driveway.
- b) If d = 4, what is the area, the width and the length

The area of a rectangular drive is $9d^2 + 3d$ square metres. The driveway is 3dmetres long.

a) Determine a polynomial that represents the width of the driveway.

$$9d^2 + 3d$$
$$3d$$
$$= 3d + 1$$

b) If d = 4, what is the area, the width and the length A= LXW = 12×13 = 156m2

$$W = 3d + 1$$

= $3d + 1$
= $3(4) + 1$
= $12 + 1$
= 13_{M}
= 12_{M}
L= $3d$
= $3(4)$
= 12_{M}

Write a Binomial that matches the description: Variables: p and r, Degree: 6; Constant: -5

Simplify: a)
$$(12x^3 + 4x^2 - 2x) \div 2x$$

$$\frac{|3x^3 + 4x^2 - 2x|}{3x'} \div \frac{2x}{3x'}$$

$$= 6x^3 + 2x' - 1$$

b)
$$5x(x^2 - 3xy + 5x)$$

$$5x^3 - 15x^3y + 25x^2$$