### Questions from Homework

(3) for 
$$3x-3$$
,  $3x-5$ ,  $3x-8$ ,  $3x-11$ ,  $3x-14$   
 $0x=3x-3$   $0x-3x-3$   $0x-14$ ,  $0x-14$   
 $0x-3x-3$   $0x-3x-14$   
 $0x-3x-3$   $0x-14$   
 $0x-3x-3$   $0x-14$   
 $0x-16$   
 $0x-16$ 

$$q = \frac{x}{9}$$

$$q = \frac{x}{9}$$

$$q = \frac{x}{9}$$

$$q = \frac{x}{9}$$

$$q = \frac{x}{9} + \frac{x}{9} - \frac{x}{9}$$

$$\frac{1}{4} \text{ b) } \alpha = \frac{1}{3}$$

$$\frac{1}{3} - \frac{1}{3}$$

$$\frac{1}{3} -$$

# Geometric Sequences

Ex: 2, 4, 8, 16, 32

Sequences of numbers that follow a pattern of multiplying a fixed number from one term to the next are called geometric sequences.

- To find the next term, multiply the previous term by a common ratio.
- In the sequence 2, 4, 8, 16, 32 we are multiplying by 2.
- This common ratio is called "r"  $(r = t_2/t_1)$ .
- The first term is still called "a" or " $t_1$ ".
- The second term is called "t<sub>2</sub>".
- The last term or an indicated term is called "t<sub>n</sub>". (general term)
- The position of a term or the number of terms is called "n".

# Geometric Sequences

Remember  $r = t_2/t_1$ 

Find "r" and the next term!

$$\Gamma = \frac{1}{4} = \frac{1}{4} = \frac{1}{4} = \frac{1}{4}$$

$$\Gamma = \frac{1}{6} = \frac{1}{6} = \frac{1}{6}$$

$$\Gamma = \frac{t_3}{t_1} = \frac{0.06}{0.01} = 6$$

## Geometric Sequences

To find any given term in a geometric sequence we use the following formula:

$$t_n = ar^{n-1}$$

## Examples

Find the indicated term

1. 
$$3, 6, 12...$$

$$t_7 = (3)(3)^6$$

$$= (3)(3)^6$$

$$= 3(64)$$

$$= 193$$
2.  $2, -1, \frac{1}{2}, \frac{-1}{4}...$ 

$$c = 3$$

$$c = -\frac{1}{3}$$

$$= (3)(-\frac{1}{3})^{9-1}$$

We can also determine the number of terms in the sequence.

$$t_n = ar^{n-1}$$

How many terms are in the following sequences? (Solve for "n")

9, 27, 81,... 2187

$$a = 9$$
 $a = 9$ 
 $a = 3$ 
 $a = 3$ 

Find "a", "r", and "t<sub>n</sub>" for the following sequences!

$$t_2 = 12$$
,  $t_5 = 768$ 

$$t_{a} = \alpha r^{3-1}$$

$$t_{b} = \alpha r$$

$$t_{b} = \alpha r$$

$$\alpha r = 18$$

$$\alpha r = 18$$

$$\alpha r = 768$$

$$\alpha x = 368$$

$$\alpha x = 368$$

$$\frac{\alpha r^{4} = 768}{\alpha r = 10} \Rightarrow \frac{1}{4n} = \frac{10}{4n} \Rightarrow \frac{1}{4n} \Rightarrow$$

$$t_3 = 64, t_7 = 4$$

## Homework

#1-#6