Find "a", "r", and " t_n " for the following sequence!

$$t_3 = 64, t_7 = 4$$

$$t_3 = \alpha r^{\delta} \qquad t_7 = \alpha r^{\delta}$$

$$\alpha r^{\delta} = 64 \qquad \alpha r^{\delta} = 4$$

$$\frac{d^{2} - d}{dt^{2} - dt} = \frac{d}{dt}$$

$$\frac{d^{2} - d}{dt^{2} - dt}$$

$$\frac{d^{2} - d}{dt^{$$

Arithmetic Series

Series: The sum of the terms of a sequence. The sum is usually finite: 1+2+3+4+5. However it could be infinite: 2+4+8+16+... You can find the sum of many finite series and certain types of infinite series by using formulas.

$$S_n = \frac{n}{2}(2a + (n-1)d)$$

$$S_n = \frac{n}{2}(a + t_n)$$

"n"

Find the sum of the first 100 terms of the arithmetic series <u>1</u>+4+7+10+...

$$a = 1
d = t_2 - t_1 = 3
n = 100
S_n = \frac{n}{2}(2a + (n-1)d)
S_{100} = \frac{100}{3}(3(1) + (100 - 1)(3))
= 50(3 + 99(3))
= 50(399)
= [14 950]$$

3

Find the sum of the following series

$$\frac{1}{2} + 1 + \frac{3}{2} + 2, \dots + 20$$

Hint: How many terms are there?

$$a = \frac{1}{2}$$

$$d = \frac{1}{2}$$

$$t_{n} = \alpha + (n - 1)d$$

$$d = \frac{1}{2} + \frac{1}{2} +$$

How many terms are in the series: 3+8+13+...+248 if its sum is 6275?

a = 3
d = 5

$$S_n = 6275$$

 $t_n = 248$

$$S_n = \frac{n}{2}(a + t_n)$$

$$6975 = \frac{n}{2}(3 + 8)$$

$$6975 = \frac{n}{2}(861)$$

$$6975 = \frac{351}{2}$$

$$951n = 18550$$

$$1n = 501$$

Find the indicated sums of the following series:

$$S_{15} ext{ of } 2+6+10....$$

$$a = 3 ext{ } S_{15} = \frac{15}{3} (3(3) + (15-1)(4))$$

$$d = 4 ext{ } 15 ext{ } (4+14(4))$$

$$= \frac{15}{3} (4+56)$$

$$= \frac{15}{3} (60)$$

$$= \frac{15}{3} (60)$$

$$S_{20} ext{ of } -15-10-5+...$$

$$a = -15 ext{ } S_{20} = \frac{20}{3} (3(15) + (20-1)(5))$$

$$d = 5 ext{ } 10 (-30+19(5))$$

$$= 10 (-30+95)$$

$$= 10 (65)$$

Homework

#1-8