Find "a", "r", and " t_n " for the following sequence! $$t_3 = 64, t_7 = 4$$ $$t_3 = \alpha r^{\delta} \qquad t_7 = \alpha r^{\delta}$$ $$\alpha r^{\delta} = 64 \qquad \alpha r^{\delta} = 4$$ $$\frac{d^{2} - d}{dt^{2} - dt} = \frac{d}{dt}$$ $$\frac{d^{2} - d}{dt^{2} - dt}$$ d}{dt^{$$ ## Arithmetic Series Series: The sum of the terms of a sequence. The sum is usually finite: 1+2+3+4+5. However it could be infinite: 2+4+8+16+... You can find the sum of many finite series and certain types of infinite series by using formulas. $$S_n = \frac{n}{2}(2a + (n-1)d)$$ $$S_n = \frac{n}{2}(a + t_n)$$ "n" Find the sum of the first 100 terms of the arithmetic series <u>1</u>+4+7+10+... $$a = 1 d = t_2 - t_1 = 3 n = 100 S_n = \frac{n}{2}(2a + (n-1)d) S_{100} = \frac{100}{3}(3(1) + (100 - 1)(3)) = 50(3 + 99(3)) = 50(399) = [14 950]$$ 3 ## Find the sum of the following series $$\frac{1}{2} + 1 + \frac{3}{2} + 2, \dots + 20$$ Hint: How many terms are there? $$a = \frac{1}{2}$$ $$d = \frac{1}{2}$$ $$t_{n} = \alpha + (n - 1)d$$ $$d = \frac{1}{2} +$$ How many terms are in the series: 3+8+13+...+248 if its sum is 6275? a = 3 d = 5 $$S_n = 6275$$ $t_n = 248$ $$S_n = \frac{n}{2}(a + t_n)$$ $$6975 = \frac{n}{2}(3 + 8)$$ $$6975 = \frac{n}{2}(861)$$ $$6975 = \frac{351}{2}$$ $$951n = 18550$$ $$1n = 501$$ Find the indicated sums of the following series: $$S_{15} ext{ of } 2+6+10....$$ $$a = 3 ext{ } S_{15} = \frac{15}{3} (3(3) + (15-1)(4))$$ $$d = 4 ext{ } 15 ext{ } (4+14(4))$$ $$= \frac{15}{3} (4+56)$$ $$= \frac{15}{3} (60)$$ $$= \frac{15}{3} (60)$$ $$S_{20} ext{ of } -15-10-5+...$$ $$a = -15 ext{ } S_{20} = \frac{20}{3} (3(15) + (20-1)(5))$$ $$d = 5 ext{ } 10 (-30+19(5))$$ $$= 10 (-30+95)$$ $$= 10 (65)$$ ## Homework #1-8