Parts of an Atom

Atom - is electrically neutral p+ = + e -)
- is composed of a nucleus containing protons and neutrons, and electrons that surround the nucleus.

<u>Atomic Number</u> - is the number of protons found in the nucleus of an atom.

<u>Protons</u> - are subatomic particles possessing a positive charge.

Neutrons - are subatomic particles possessing a neutral charge.

<u>Electrons</u> - are subatomic particles possessing a negative charge. For an atom, the electrons are equal to the atomic number.

<u>Isotope</u> - is a form of an element in which the atoms have the same null protons as all other forms of that element, but it has a **different numbe neutrons and therefore a different atomic mass**.

<u>Mass Number</u> - is the sum of the number of protons and neutrons.

Carbon - 6 protons and 6 neutrons has a mass number of 12.

Another isotope of ¹²C is ¹³C, which has 6 protons and 7 neutrons.

MAIN SUBATOMIC PARTICLES

Particle	Location	Relative Mass	Charge
proton	nucleus	1 a.m.u.	+
neutron	nucleus	1 a.m.u.	none
electron	outside nucleus	small	-

$$C - 6p^{+}$$
 $C - 6p^{+}$ $- 6e^{-}$ $- 6e^{-}$ $- 7n$ $- 12 a.m.u.$ 13 a.m.u.

isotopes

	Charge	Location	Relative Size
protons	+'ive	nucleus	l a.m.u.
neutrons	neutral	nucleus	a.m.u.
electrons	- ~ive	outside nucleus	"massless"

Isotopes of Carbon

Calculating Atomic Mass

To calculate the atomic mass of an element, multiply the mass of each isotope by its natural abundance, expressed as a decimal, and then add the products.

Ex. Carbon has two stable isotopes: carbon - 12 (12.000 amu) which has natural abundance of 98.89%,and carbon - 13 (13.003 amu), which has natural abundance of 1.11%. What is the atomic mass of carbon?

$$(12.000)(0.9889) + (13.003)(0.0111)$$

Sample Problem

Element X has two natural isotopes. The isotope with a mass of 10.012 amu (10 X) has a relative abundance of 19.91%. The isotope with a mass of 11.009 amu (11 X) has a relative abundance of 80.09%. Calculate the atomic mass of this element.

Homework

Section 4.3 p. 110-118

Practice Problems #17-22