Area of a Triangle
How would you find the area of triangle ABC?

$$
\frac{\sin A}{1 E}=\frac{h}{b}
$$

$$
h=b \operatorname{Sin} A
$$

$$
\begin{aligned}
& A=\frac{1}{2}(c)(b \sin A) \\
& A=\frac{1}{2} b c \operatorname{Sin} A
\end{aligned}
$$

In this triangle, the base is "c", so

Replace the "h" with an expression using $\sin \mathrm{A}$:

$$
\begin{aligned}
& \sin A=\frac{\text { opp }}{h y p} \\
& \sin A=\frac{h}{b}
\end{aligned}
$$

Solving for $\mathbf{h}: \mathbf{h}=\mathbf{b} \sin \mathbf{A}$

If we fill $\mathbf{h}=\mathbf{b} \sin \mathbf{A}$ into our formula, we get:

Area $=1 / 2 \mathbf{c}(b \sin A)$
 OR

This formula is used to calculate the area of all oblique (non-right) triangles.

Sometimes finding the area of a right triangle can be done more efficiently using this area formula as well.

WTo use this formula to find area, you need any 2 sides and the included angle measure of any triangular shape. (You do not need the height:)

When the area of a triangular shape is given, you can use the formula to find any of the missing three measures (b, c, sin A) as long as the other two measures are given.

Example 1:
What is the area of the following triangle?

Solution:
$A=1 / 2 \mathrm{qr} \sin P$
$=1 / 2(9.30)(5.40) \sin 18.4^{\circ}$
$=1 / 2(9.30)(5.40)(0.3156)$
$=1 / 2(15.8494)$
$=7.92 \mathrm{~m}^{\mathbf{2}}$ (Watch Units:)

$$
\begin{aligned}
A_{\text {tea }} & =\frac{1}{2} g r \sin P \\
& =\frac{1}{2}(9.3)(5.4)(\sin 18.4) \\
& =\frac{1}{\gamma}(9.3)(5.4)(0.3156) \\
& =7.9 \mathrm{~m}^{\circ}
\end{aligned}
$$

Example 2:

If the area of a triangular region on a stage was to be carpeted with $37 \mathrm{~m}^{2}$ of carpet, and two adjacent sides measured 12.0 m and 6.7 m , what is the angle between the two sides.

Solution:

$$
\begin{aligned}
& \text { Area }=37 \mathrm{~m}^{2} \quad A=\text { ? } \\
& b=12 \mathrm{~m} \\
& c=6.7 \mathrm{~m}
\end{aligned}
$$

$A=1 / 2 b c \sin A$
$37 \mathrm{~m}^{2}=1 / 2(12.0 \mathrm{~m})(6.7 \mathrm{~m}) \sin A$
$37 \mathrm{~m}^{2}=40.2 \mathrm{~m}^{2} \sin A$
$37 \mathrm{~m}^{2}=40.2 \mathrm{~m}^{2} \sin A$
$40.2 \mathrm{~m}^{2} 40.2 \mathrm{~m}^{2}$
$0.9204=\sin A$
$\operatorname{Sin}^{-1}(0.9204)=A$
$67^{\circ}=A$

