

Homework Solutions

- 5. a) Trinomial; it has three terms of different degrees.

 - b) Binomial; it has two terms of different degrees.
 c) Monomial: it has only one term of degree 1.
 d) Monomial: it has only one term of degree 0.
 - a) Coefficient: -7: variable: x: degree: 1
 b) Coefficient: 14: variable: a: degree: 2
 c) Coefficient: 1; variable: m; degree: 1
 d) No coefficient: no variable: degree: 0
- **9. a)** Coefficients: 5, -6; variable: *x*; degree: 2;
 - constant term: 2
 Coefficient: 7; variable: b; degree: 1; constant term: -8
 - c) Coefficient: 12; variable: c; degree: 2; constant term: 2

 - d) Coefficient: 12; variable: m; degree: 1
 e) No coefficients; no variable; degree: 0; constant term: 18
 - f) Coefficients: 5, -8; variable: x; degree: 2;
- 11. a)

- **12. a)** B
 - c) E
- **d)** A
- e) C
- **13. a)** −16; monomial
- **b)** x 8; binomial d)
- c) 4x; monomial
 - $2x^2 8x + 3$; trinomial e) -5t + 5; binomial f) $5x^2$; monomial
- g) $-2x^2 + 2x 3$; trinomial h) $-3x^2 + 8$; binomial

142 degree 7, with 2 terms _m + 100

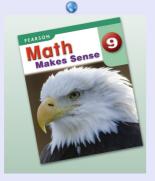
degree is largest exponent terms are separated by to by to degree zero, with 1 term or 10

10

5 a

5 a

7 clegree 2 w 1 term


http://jmh.nbed.nb.ca/

Homework and Notes

Text book link:

http://www.mathmakessense.ca/

- click on web books "login"
- click on "Math Makes Sense 9"
- user name: jamesmhill_student

password: student2010

Class Outline

Section 5.2 Like Terms & Unlike Terms

What do the following pairs of integers all have in common?

1. 1

-2, 2

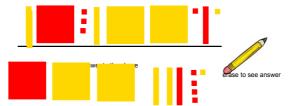
What happens when you add them?

-100, 100

-15, 15

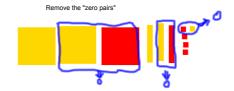
What do you think happens when a "x2" tile and a "-x2" tile combine?

They form a zero pair

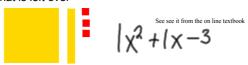

Answer

TILES

Like Terms:


are algebra tiles with the same shape and size (Don't worry about colour \longrightarrow signs)

Here is a collection of tiles, lets group them together into "like terms".



Always collect like terms

Once you collected like terms you have to simplify the tiles

Copy what is left over



Simplified Form

*fewest algebra tiles possible

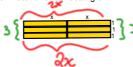
*contains only one term of each degree and no terms with a zero

Simplify the following polynomial

Example: $-3x + 2x^2 - 7 + 10x + 5 - 4x^2$

Always start with the largest exponent 2x²-4x² -3x+10x -7+5

Step 2) Combine like terms $-2x^2 + 7x - 3$


Ex) 3+4h+h+7

Ex)
$$4x^2 + 4x^3 + 2x^2$$

Perimeter - is the distance around an object

- to calculate you add the length of each side

Write a polynomial to represent the perimeter of each rectangle.

Example 2) Write a polynomial to represent the perimeter of each rectangle.

Example 3) Use algebra tile to make the rectangle with perimeter 6x + 4

#6 #7

#8(write the simplified expression...You don't have to draw

them out)

#9 #12(a, d, f) #13(a, d, f) #14(b, c, f) #17 #19 (a,b)

$$\frac{12a}{2m} = \frac{3m}{4} - \frac{8}{3m} - \frac{8}{4}$$

$$-1m - 4$$

5

Course Outline Grade 9 2010-2011 Second Semester.docx