Linear Equations: y = mx + b

A linear relation can be defined by its slope and any point on the line.

Examine the graphs of the linear relations shown on the next page.

Write the equation of each line:

Hint: Look for the y-intercept and use $\underline{\text{rise}}$ to closest point

Notice how the slope and the y-intercept relate to the equation.

Solutions:
y-intercept =
$$-3$$

slope = -3
equation: $y = -3 \times -3$

Any linear relation can be expressed as y = mx + b, where m is the slope of the relation and b is the y-intercept.

This is called the slope y-intercept form of an equation.

very important

Example 1:

Determine the slope and y-intercept of the line given by 3x - 4y = 12.

Solution:

$$3x - 4y = 12$$

$$3x - 4y = 12; y-intercept$$

$$-4y = -3x + 12$$

$$-\frac{1}{4}y = -\frac{3}{4}x + \frac{12}{-y}$$

$$y = \frac{3}{4}x - \frac{3}{4}$$

Example 2: ****

The lines represented by y + 2 = 2(x - 3) + kx and 3(x + 2) = 3 + y have equal slopes. Find the value of "k".

y= mx+b

Solution:

HINT

Write each equation in the slope y-intercept form and compare the slopes.

more room on next page to wok this solution out

$$y+2 = 2(x-3) + kx$$

$$y+2 = 2x - 6 + kx$$

$$y+2 = 2x + kx - 6$$

$$y+3 = x(3+k) - 6$$

$$y+3 = x(3+k) - 6$$

$$y+3 = x(3+k) - 8$$

$$y=x(3+k) - 8$$

$$y=x(3+k$$

$$3(x+2) = 3+y$$

$$3x+6 = 3+y$$

$$3x+6-3=8+y$$

$$3x+3=-y$$

$$M=3$$

Example 3:

very important

Sketch the line which has: m = 2, b = -3

Example 4:

Sketch the line which has: m = -1, b = 6

Example 5)

very important

Find the value of k if the endpoints of a line are (1,k) & (11,-11) with m=1

$$M = \frac{y_2 - y_1}{x_2 - x_1}$$

$$\frac{1}{5} = \frac{(11 - k)}{(11 - 1)}$$

$$\frac{1}{5} = \frac{(-11 - k)}{(10 - 10)}$$

#1ad #2 ad #4 ad cf #5 abc #5 b #7b #8a

Limear Equations