Q 0,3,8,17,18,20,34,36,38,38,30,34

a) Mean =
$$\frac{238}{19}$$

= 19,8

- 19.8 393.04 310.8 393.34	Hours	Difference from Mean (19.8)	Square of Difference
30 30 30 30 10.3 101.64 30 10.3 101.64 30 101.64 30 101.64	38 38 17 18 38 17 38	- 19.8 - 19.8 - 19.9 -	392.04 382.24 139,04 7.84 3.24 4.64 38.44 67.24 104.04

$$5d = \sqrt{\frac{1335.88}{13}} = \sqrt{110.47} = \sqrt{10.51}$$

Samples vs. Populations

SAMPLE

It is usually easier and less expensive to obtain a *sample* than to obtain all of the measurements from the *population*. For this reason, we must learn how to examine the <u>sample mean</u> represented by \overline{x} (x bar), and the <u>sample standard</u> <u>deviation</u>, represented by S_x .

Formulas:

Sample Mean -
$$x = \frac{x_1 + x_2 + x_3 + x_4 + ... + x_n}{n}$$
 {Normal Mean Calculation}

Sample Standard Deviation
$$-S_x = \sqrt{\frac{(x_1 - \overline{x})^2 + (x_2 - \overline{x})^2 + (x_3 - \overline{x})^2 + \dots + (x_n - \overline{x})^2}{n-1}}$$

^{*}This is the same method as you previously learned for finding standard deviation, with the addition of the " $\mathbf{n} - \mathbf{1}$ ".

POPULATION

We must also learn how to examine the <u>population mean</u>, represented by μ (mu), and the **population standard deviation**, represented by σ (sigma).

Formulas:

Population Mean
$$\underbrace{x_1 + x_2 + x_3 + x_4 + ... + x_n}_{n}$$
 {Same Formula, just different symbol!}

Population Standard Deviation –
$$\sigma$$
 $= \sqrt{\frac{(x_1-\mu)^2+(x_2-\mu)^2+(x_3-\mu)^2+\cdots+(x_n-\mu)^2}{n}}$

^{**}These two formulas apply only to *finite* populations, not *infinite* populations.