$$
\begin{aligned}
& \text { (3) } \begin{aligned}
\text { mean } & =\frac{238}{0,3,8,17,18,22,24,26,28,28,30,34} \\
& =19.8
\end{aligned} \\
& \text { sum }
\end{aligned}
$$

Hours	Difference from Mean (198)	Square of Difference
0	-19.8	392.04
3	-16.8	282.24
8	-11.8	139.24
17	-2.8	7.84
18	-1.8	3.24
22	2.2	4.84
24	4.2	17.64
26	6.2	38.44
28	8.2	67.24
28	8.2	67.24
30	10.2	104.04
34	14.2	201.64
		1325.68

$$
s d=\sqrt{\frac{1325.68}{12}}=\sqrt{110.47}=10.51
$$

Samples vs. Populations

SAMPLE

It is usually easier and less expensive to obtain a sample than to obtain all of the measurements from the population. For this reason, we must learn how to examine the sample mean represented by \bar{x} (x bar), and the sample standard deviation, represented by $\boldsymbol{S}_{\boldsymbol{x}}$.

Formulas:

Sample Mean $-\bar{x}=\frac{x_{1}+x_{2}+x_{3}+x_{4}+\ldots+x_{n}}{n} \quad\{$ Normal Mean Calculation\}
$\xrightarrow[{\text { Sample Standard Deviation }-S_{x}=\sqrt{\frac{\left(\mathrm{x}_{1}-\bar{x}\right)^{2}+\left(\mathrm{x}_{2}-\bar{x}\right)^{2}+\left(\mathrm{x}_{3}-\bar{x}\right)^{2}+\cdots+\left(\mathrm{x}_{\mathrm{n}}-\bar{x}\right)^{2}}{n-1}}}]{\underline{=}}$
*This is the same method as you previously learned for finding standard deviation, with the addition of the " $\mathbf{n - 1}$ ".

POPULATION

We must also learn how to examine the population mean, represented by $\boldsymbol{\mu}(\mathrm{mu})$, and the population standard deviation, represented by $\boldsymbol{\sigma}$ (sigma).

Formulas:

$\frac{\text { Population Mean }}{\text { (11) }} \frac{x_{1}+x_{2}+x_{3}+x_{4}+\ldots+x_{n}}{n}$ \{Same Formula, just different symbol!\}
Population Standard Deviation $\sigma=\sqrt{\frac{\left(\mathrm{x}_{1}-\mu\right)^{2}+\left(\mathrm{x}_{2}-\mu\right)^{2}+\left(\mathrm{x}_{3}-\mu\right)^{2}+\cdots+\left(\mathrm{x}_{\mathrm{n}}-\mu\right)^{2}}{n}}$
**These two formulas apply only to finite populations, not infinite populations.

